File size: 2,050 Bytes
12972a2 e0f1ef5 12972a2 7a9cf68 e0f1ef5 12972a2 8b5dc25 12972a2 8b5dc25 12972a2 e0f1ef5 12972a2 7a9cf68 12972a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mt5-small-task3-dataset1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-task3-dataset1
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3592
- Accuracy: 0.14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6139 | 1.0 | 250 | 1.3916 | 0.102 |
| 1.5289 | 2.0 | 500 | 1.4550 | 0.108 |
| 1.4823 | 3.0 | 750 | 1.3630 | 0.132 |
| 1.4372 | 4.0 | 1000 | 1.3930 | 0.116 |
| 1.4563 | 5.0 | 1250 | 1.3857 | 0.124 |
| 1.4347 | 6.0 | 1500 | 1.3708 | 0.124 |
| 1.4303 | 7.0 | 1750 | 1.3856 | 0.136 |
| 1.4072 | 8.0 | 2000 | 1.3595 | 0.136 |
| 1.4045 | 9.0 | 2250 | 1.3677 | 0.13 |
| 1.3861 | 10.0 | 2500 | 1.3511 | 0.13 |
| 1.376 | 11.0 | 2750 | 1.3543 | 0.136 |
| 1.3699 | 12.0 | 3000 | 1.3592 | 0.14 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|