BiRefNet / README.md
ZhengPeng7's picture
Update README.md
c7d1588 verified
|
raw
history blame
8.14 kB
metadata
library_name: birefnet
tags:
  - background-removal
  - mask-generation
  - Dichotomous Image Segmentation
  - Camouflaged Object Detection
  - Salient Object Detection
  - pytorch_model_hub_mixin
  - model_hub_mixin
repo_url: https://github.com/ZhengPeng7/BiRefNet
pipeline_tag: image-segmentation

Bilateral Reference for High-Resolution Dichotomous Image Segmentation

Peng Zheng 1,4,5,6,  Dehong Gao 2,  Deng-Ping Fan 1*,  Li Liu 3,  Jorma Laaksonen 4,  Wanli Ouyang 5,  Nicu Sebe 6
1 Nankai University  2 Northwestern Polytechnical University  3 National University of Defense Technology  4 Aalto University  5 Shanghai AI Laboratory  6 University of Trento 
DIS-Sample_1 DIS-Sample_2

This repo is the official implementation of "Bilateral Reference for High-Resolution Dichotomous Image Segmentation" (arXiv 2024).

Visit our GitHub repo: https://github.com/ZhengPeng7/BiRefNet for more details -- codes, docs, and model zoo!

How to use

1. Load BiRefNet:

Use codes + weights from HuggingFace

Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).

# Load BiRefNet with weights
from transformers import AutoModelForImageSegmentation
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/birefnet', trust_remote_code=True)

Use codes from GitHub + weights from HuggingFace

Only use the weights on HuggingFace -- Pro: codes are always latest; Con: Need to clone the BiRefNet repo from my GitHub.

# Download codes
git clone https://github.com/ZhengPeng7/BiRefNet.git
cd BiRefNet
# Load weights
from models.birefnet import BiRefNet

# Option-1: From Hugging Face Models
birefnet = BiRefNet.from_pretrained('zhengpeng7/birefnet')

# Option-2: From local disk
import torch
from utils import check_state_dict

birefnet = BiRefNet(bb_pretrained=False)
state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
state_dict = check_state_dict(state_dict)
birefnet.load_state_dict(state_dict)

Use the loaded BiRefNet for inference

# Imports
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from models.birefnet import BiRefNet

birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
torch.set_float32_matmul_precision(['high', 'highest'][0])
birefnet.to('cuda')
birefnet.eval()

def extract_object(birefnet, imagepath):
    # Data settings
    image_size = (1024, 1024)
    transform_image = transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    image = Image.open(imagepath)
    input_images = transform_image(image).unsqueeze(0).to('cuda')

    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image.size)
    image.putalpha(mask)
    return image, mask

# Visualization
plt.axis("off")
plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
plt.show()

This BiRefNet for standard dichotomous image segmentation (DIS) is trained on DIS-TR and validated on DIS-TEs and DIS-VD.

This repo holds the official model weights of "Bilateral Reference for High-Resolution Dichotomous Image Segmentation" (arXiv 2024).

This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).

Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)

Try our online demos for inference:

  • Online Single Image Inference on Colab: Open In Colab
  • Online Inference with GUI on Hugging Face with adjustable resolutions: Hugging Face Spaces
  • Inference and evaluation of your given weights: Open In Colab

Acknowledgement:

  • Many thanks to @fal for their generous support on GPU resources for training better BiRefNet models.
  • Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.

Citation

@article{zheng2024birefnet,
  title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
  author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
  journal={arXiv},
  year={2024}
}