File size: 9,447 Bytes
766ea9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
import jsonlines
import json
# from deepeval.scorer import Scorer
from deepeval.models import OllamaModel
from deepeval.metrics import (
  ContextualRelevancyMetric,
  ContextualRecallMetric,
  ContextualPrecisionMetric,
  AnswerRelevancyMetric,
  FaithfulnessMetric
)

# import docx


from deepeval.test_case import LLMTestCase
from deepeval.dataset import EvaluationDataset, Golden

from deepeval import evaluate
from deepeval.models import OllamaModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from Llemma_Finetuned import Llemma_Finetuned
import ollama

#ollama run Hudson/llemma:7b
#deepeval set-ollama Hudson/llemma:7b

if __name__=="__main__":
    # Initialize parser
    parser = argparse.ArgumentParser()

    # Adding optional argument
    parser.add_argument("-n", "--num", help = "Number of test cases to use")
    parser.add_argument("-s", "--shot", help = "n-shot inference examples")
    parser.add_argument("-d", "--dataset", help = "Path to test case dataset")

    # Read arguments from command line
    args = parser.parse_args()
    test_case_num = int(args.num)
    num_shot = int(args.shot)
    dataset_name = str(args.dataset)

    

    # orig
    # model = ollama.pull(model="Hudson/llemma:7b")
    #OllamaModel(model="Hudson/llemma:7b")

    # finetuned
    # llemma_model = AutoModelForCausalLM.from_pretrained("./train_llemma/merged_models/llemma_lora_merged")
    # tokenizer = AutoTokenizer.from_pretrained("./train_llemma/merged_models/llemma_lora_merged")
    # model = Llemma_Finetuned(model=llemma_model, tokenizer=tokenizer)

    sorted_rows = []
    with open('dataset_row_stl.txt', 'r') as file:
        sorted_rows = file.readlines()
    # print(sorted_rows)
    sorted_rows = sorted_rows[0:num_shot]
    sorted_rows = [int(x) for x in sorted_rows]

    print("Read in sorted rows.")

    examples = "Here are " + str(num_shot) + " examples of math questions (Q) with given answers (A).\n"
    with jsonlines.open("mse_text_img_QA_ds_test.jsonl", mode='r') as fp:
        #with open("mse_text_img_QA_ds_test.jsonl", mode='r') as fp:
        n = 0
        for j, data in enumerate(fp):
            if j + 1 in sorted_rows:
                print("Num shot row " + str(j + 1))
                # data = json.loads(line)
                examples += "Q: " + data["body"] + "\n\n"
                is_accepted = False
                best_score = float('-inf')
                output_text = ""
                for i in range(len(data["answers"])):
                    if bool(data["answers"][i]["accepted"]) == True:
                        if is_accepted == False:
                            is_accepted = True
                            best_score = int(data["answers"][i]["score"])
                            output_text = data["answers"][i]["body"]
                        elif int(data["answers"][i]["score"]) > best_score:
                            best_score = int(data["answers"][i]["score"])
                            output_text = data["answers"][i]["body"]
                    elif int(data["answers"][i]["score"]) > best_score:
                        best_score = int(data["answers"][i]["score"])
                        output_text = data["answers"][i]["body"]
                examples += "A: " + output_text + "\n\n"
                if n == (num_shot - 1):
                    examples += "Provide an answer (A) to the following math question (Q) in a similar manner to the previous example(s) given.\n\nQ: "
                # 26th line
                n += 1
            elif n >= num_shot:
                break
            else:
                continue
    
    print("Generated examples for", str(num_shot), "shot.")

    mse_dataset = []
    with jsonlines.open("mse_text_img_QA_ds_test.jsonl", mode='r') as reader:

        count = 0
        
        curr_row = 0
        for row in reader.iter(type=dict, skip_invalid=True):
            curr_row += 1
            if curr_row == 33 or curr_row == 36 or curr_row == 69 \
                or curr_row == 24 or curr_row == 76 \
                or curr_row == 66 or curr_row == 9 \
                or curr_row == 26 or curr_row == 27 \
                or curr_row == 37 or curr_row == 55 \
                or curr_row == 54 or curr_row == 138 \
                or curr_row == 77 or curr_row == 84 or curr_row == 87 \
                or curr_row == 80 or curr_row == 81 or curr_row == 97 \
                or curr_row == 115 or curr_row == 106:
                print("Skipped row " + str(curr_row))
                continue
            elif curr_row in sorted_rows:
                print("Skipped row " + str(curr_row) + " because it is a shorter example")
                continue
        # question_path = "output/" + row["id"]
            # if count ual<= 0:
            #     print(obj)
            if count >= test_case_num:
                break
            else:
                input_text = row["body"]
                # response = ollama.generate(model='Hudson/llemma:7b', prompt=input_text)
                # actual_response = response['response']
                is_accepted = False
                best_score = float('-inf')
                output_text = ""
                # context = []
                next_best_answer = ""
                for i in range(len(row["answers"])):
                    if bool(row["answers"][i]["accepted"]) == True:
                        if is_accepted == False:
                            is_accepted = True
                            next_best_answer = output_text
                            best_score = int(row["answers"][i]["score"])
                            output_text = row["answers"][i]["body"]
                        elif int(row["answers"][i]["score"]) > best_score:
                            next_best_answer = output_text
                            best_score = int(row["answers"][i]["score"])
                            output_text = row["answers"][i]["body"]
                        # else:
                            # context.append(row["answers"][i]["body"])
                    elif int(row["answers"][i]["score"]) > best_score:
                        next_best_answer = output_text
                        best_score = int(row["answers"][i]["score"])
                        output_text = row["answers"][i]["body"]
                    # else:
                    #     context.append(row["answers"][i]["body"])
                if next_best_answer == "" or next_best_answer is None:
                    next_best_answer = row["title"]
                # test_case_dataset.append(LLMTestCase(input=input_text, actual_output=actual_response, expected_output=output_text, retrieval_context=None))
                # test_case_dataset.append(LLMTestCase(input=input_text, actual_output=model.generate(input_text), expected_output=output_text, retrieval_context=context))
                if num_shot == 0:
                    i_text = json.dumps(input_text)
                    e_output = json.dumps(output_text)
                    r_context = json.dumps(next_best_answer)
                    gen_answer = ollama.generate(model="Hudson/llemma:7b", prompt=i_text)
                    a_output = json.dumps(gen_answer.response)
                    # print("i_text = ", i_text)
                    # print("a_output = ", a_output)
                    # print("e_output = ", e_output)
                    # print("r_context = ", r_context)
                    # r_context = gen_answer.context
                    # if is_invalid_length(i_text) or is_invalid_length(e_output) or is_invalid_length(r_context):
                    #     continue
                    mse_dataset.append(LLMTestCase(input=i_text, actual_output=a_output, expected_output=e_output, retrieval_context=[r_context]))
                else:
                    i_text = json.dumps(examples + input_text)
                    e_output = json.dumps(output_text)
                    r_context = json.dumps(next_best_answer)
                    gen_answer = ollama.generate(model="Hudson/llemma:7b", prompt=i_text)
                    a_output = json.dumps(gen_answer.response)
                    # r_context = gen_answer.context
                    # print("i_text = ", i_text)
                    # print("a_output = ", a_output)
                    # print("e_output = ", e_output)
                    # print("r_context = ", r_context)
                    # if is_invalid_length(i_text) or is_invalid_length(e_output) or is_invalid_length(r_context):
                    #     continue
                    mse_dataset.append(LLMTestCase(input=i_text, actual_output=a_output, expected_output=e_output, retrieval_context=[r_context]))
                count = count + 1
                # if curr_row % 1 == 0:
                print("At", str(count), "out of", str(test_case_num), " current row =", str(curr_row))

    # first_test_case = LLMTestCase(input="...", actual_output="...", context=["..."])
    # second_test_case = LLMTestCase(input="...", actual_output="...", context=["..."])


    dataset = EvaluationDataset(test_cases=mse_dataset)
    dataset.save_as(file_type="json", directory="./deepeval-test-dataset", file_name=dataset_name, include_test_cases=True)