File size: 2,291 Bytes
edb1538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-extraction-cnndm_4000-all
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-extraction-cnndm_4000-all

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7290
- Rouge1: 35.0775
- Rouge2: 15.2209
- Rougel: 30.1796
- Rougelsum: 30.1599
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 24
- seed: 1799
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.1464        | 0.4   | 200  | 1.8323          | 35.2242 | 15.3495 | 30.142  | 30.1331   | 19.0    |
| 1.9817        | 0.8   | 400  | 1.7729          | 34.3798 | 14.7287 | 29.5447 | 29.6052   | 18.986  |
| 1.8842        | 1.2   | 600  | 1.7602          | 34.5807 | 15.1707 | 29.7768 | 29.8081   | 18.986  |
| 1.8129        | 1.6   | 800  | 1.7629          | 34.5103 | 15.231  | 29.9182 | 29.9333   | 19.0    |
| 1.8238        | 2.0   | 1000 | 1.7290          | 35.0775 | 15.2209 | 30.1796 | 30.1599   | 19.0    |
| 1.7199        | 2.4   | 1200 | 1.7354          | 34.6552 | 15.7256 | 30.1894 | 30.2207   | 18.998  |
| 1.7128        | 2.8   | 1400 | 1.7407          | 34.7198 | 15.5771 | 30.0585 | 30.0442   | 19.0    |
| 1.6816        | 3.2   | 1600 | 1.7508          | 34.9611 | 15.5792 | 30.3518 | 30.3638   | 19.0    |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.5.1
- Tokenizers 0.12.1