File size: 2,096 Bytes
0594999 bec5ca5 0594999 bec5ca5 0594999 bec5ca5 0594999 bec5ca5 0594999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-extraction-cnndm_2000-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-large-extraction-cnndm_2000-all
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8064
- Rouge1: 35.397
- Rouge2: 15.255
- Rougel: 30.1755
- Rougelsum: 30.1503
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 24
- seed: 1799
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.5259 | 0.8 | 200 | 1.8107 | 34.9007 | 14.9425 | 29.8237 | 29.8034 | 18.986 |
| 1.4407 | 1.6 | 400 | 1.8064 | 35.397 | 15.255 | 30.1755 | 30.1503 | 19.0 |
| 1.3694 | 2.4 | 600 | 1.8813 | 34.9925 | 15.2 | 30.3208 | 30.3286 | 18.99 |
| 1.3414 | 3.2 | 800 | 1.8937 | 34.8974 | 15.1983 | 30.3056 | 30.3014 | 19.0 |
| 1.3025 | 4.0 | 1000 | 1.8598 | 35.8005 | 15.6921 | 30.4112 | 30.4205 | 18.998 |
| 1.388 | 4.8 | 1200 | 1.8488 | 35.4537 | 15.1981 | 30.3749 | 30.3421 | 19.0 |
| 1.3503 | 5.6 | 1400 | 1.8335 | 35.7368 | 15.5233 | 30.6031 | 30.629 | 18.998 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.5.1
- Tokenizers 0.12.1
|