File size: 13,523 Bytes
d90ba79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Copyright 2024 Adobe. All rights reserved.

#%%
import numpy as np
import torchvision
import cv2
import tqdm
import torchvision.transforms.functional as F
from PIL import Image
from torchvision.utils import save_image
import time
import os
import pathlib
from torch.utils.data import DataLoader
# %matplotlib inline
from kornia.filters.median import MedianBlur

median_filter = MedianBlur(kernel_size=(15,15))
from moments_dataset import MomentsDataset

try:
    from processing_utils import aggregate_frames
    import processing_utils
except Exception as e:
    print(e)
    print('process failed')
    exit()

import torch


# %%

def load_image(img_path, resize_size=None,crop_size=None):

    img1_pil = Image.open(img_path)
    img1_frames = torchvision.transforms.functional.pil_to_tensor(img1_pil)
    
    if resize_size:
        img1_frames = torchvision.transforms.functional.resize(img1_frames, resize_size)

    if crop_size:
        img1_frames = torchvision.transforms.functional.center_crop(img1_frames, crop_size)

    img1_batch = torch.unsqueeze(img1_frames, dim=0)
    
    return img1_batch

def get_grid(size):
    y = np.repeat(np.arange(size)[None, ...], size)
    y = y.reshape(size, size)
    x = y.transpose()
    out = np.stack([y,x], -1)
    return out        

def collage_from_frames(frames_t):
    # decide forward or backward
    if np.random.randint(0, 2) == 0:
        # flip
        frames_t = frames_t.flip(0)
    
    # decide how deep you would go
    tgt_idx_guess = np.random.randint(1, min(len(frames_t), 20))
    tgt_idx = 1
    pairwise_flows = []
    flow = None
    init_time = time.time()
    unsmoothed_agg = None
    for cur_idx in range(1, tgt_idx_guess+1):
        # cur_idx = i+1
        cur_flow, pairwise_flows = aggregate_frames(frames_t[:cur_idx+1] , pairwise_flows, unsmoothed_agg) # passing pairwise flows for efficiency
        unsmoothed_agg = cur_flow.clone()
        agg_cur_flow = median_filter(cur_flow)
        
        flow_norm = torch.norm(agg_cur_flow.squeeze(), dim=0).flatten()
        # flow_10 = np.percentile(flow_norm.cpu().numpy(), 10)
        flow_90 = np.percentile(flow_norm.cpu().numpy(), 90)
        
        # flow_10 = np.percentile(flow_norm.cpu().numpy(), 10)
        flow_90 = np.percentile(flow_norm.cpu().numpy(), 90)
        flow_95 = np.percentile(flow_norm.cpu().numpy(), 95)
        
        if cur_idx == 5: # if still small flow then drop
            if flow_95 < 20.0:
                # no motion in the frame. skip
                print('flow is tiny :(')
                return None
        
        if cur_idx == tgt_idx_guess-1: # if still small flow then drop
            if flow_95 < 50.0:
                # no motion in the frame. skip
                print('flow is tiny :(')
                return None
        
        if flow is None: # means first iter
            if flow_90 < 1.0:
                # no motion in the frame. skip
                return None
            flow = agg_cur_flow
        
        if flow_90 <= 300: # maybe should increase this part
            # update idx
            tgt_idx = cur_idx
            flow = agg_cur_flow
        else:
            break
    final_time = time.time()
    print('time guessing idx', final_time - init_time)
    
    _, flow_warping_mask = processing_utils.forward_warp(frames_t[0], frames_t[tgt_idx], flow, grid=None, alpha_mask=None)
    flow_warping_mask = flow_warping_mask.squeeze().numpy() > 0.5
    
    if np.mean(flow_warping_mask) < 0.6:
        return
        
    
    src_array = frames_t[0].moveaxis(0, -1).cpu().numpy() * 1.0
    init_time = time.time()
    depth = get_depth_from_array(frames_t[0])
    finish_time = time.time()
    print('time getting depth', finish_time - init_time)
    # flow, pairwise_flows = aggregate_frames(frames_t)
    # agg_flow = median_filter(flow)
    
    src_array_uint = src_array * 255.0
    src_array_uint = src_array_uint.astype(np.uint8)
    segments = processing_utils.mask_generator.generate(src_array_uint)
    
    size = src_array.shape[1]
    grid_np = get_grid(size).astype(np.float16) / size # 512 x 512 x 2get
    grid_t = torch.tensor(grid_np).moveaxis(-1, 0) # 512 x 512 x 2
    
    
    collage, canvas_alpha, lost_alpha = collage_warp(src_array, flow.squeeze(), depth, segments, grid_array=grid_np)
    lost_alpha_t = torch.tensor(lost_alpha).squeeze().unsqueeze(0)
    warping_alpha = (lost_alpha_t < 0.5).float()
    
    rgb_grid_splatted, actual_warped_mask = processing_utils.forward_warp(frames_t[0], frames_t[tgt_idx], flow, grid=grid_t, alpha_mask=warping_alpha)
    

    # basic blending now
    # print('rgb grid splatted', rgb_grid_splatted.shape)
    warped_src = (rgb_grid_splatted * actual_warped_mask).moveaxis(0, -1).cpu().numpy()
    canvas_alpha_mask = canvas_alpha == 0.0
    collage_mask = canvas_alpha.squeeze() + actual_warped_mask.squeeze().cpu().numpy()
    collage_mask = collage_mask > 0.5
    
    composite_grid = warped_src * canvas_alpha_mask + collage
    rgb_grid_splatted_np = rgb_grid_splatted.moveaxis(0, -1).cpu().numpy()
    
    return frames_t[0], frames_t[tgt_idx], rgb_grid_splatted_np, composite_grid, flow_warping_mask, collage_mask

def collage_warp(rgb_array, flow, depth, segments, grid_array):
    avg_depths = []
    avg_flows = []
    
    # src_array = src_array.moveaxis(-1, 0).cpu().numpy() #np.array(Image.open(src_path).convert('RGB')) / 255.0
    src_array = np.concatenate([rgb_array, grid_array], axis=-1)
    canvas = np.zeros_like(src_array)
    canvas_alpha = np.zeros_like(canvas[...,-1:]).astype(float)
    lost_regions = np.zeros_like(canvas[...,-1:]).astype(float)
    z_buffer = np.ones_like(depth)[..., None] * -1.0
    unsqueezed_depth = depth[..., None]
    
    affine_transforms = []
    
    filtered_segments = []
    for segment in segments:
        if segment['area'] > 300:
            filtered_segments.append(segment)
    
    for segment in filtered_segments:
        seg_mask = segment['segmentation']
        avg_flow = torch.mean(flow[:, seg_mask],dim=1)
        avg_flows.append(avg_flow)
        # median depth (conversion from disparity)
        avg_depth = torch.median(1.0 / (depth[seg_mask] + 1e-6))
        avg_depths.append(avg_depth)
        
        all_y, all_x = np.nonzero(segment['segmentation'])
        rand_indices = np.random.randint(0, len(all_y), size=50)
        rand_x = [all_x[i] for i in rand_indices]
        rand_y = [all_y[i] for i in rand_indices]

        src_pairs = [(x, y) for x, y in zip(rand_x, rand_y)]
        # tgt_pairs = [(x + w, y) for x, y in src_pairs]
        tgt_pairs = []
        # print('estimating affine') # TODO this can be faster
        for i in range(len(src_pairs)):
            x, y = src_pairs[i]
            dx, dy = flow[:, y, x]
            tgt_pairs.append((x+dx, y+dy))
        
        # affine_trans, inliers = cv2.estimateAffine2D(np.array(src_pairs).astype(np.float32), np.array(tgt_pairs).astype(np.float32))
        affine_trans, inliers = cv2.estimateAffinePartial2D(np.array(src_pairs).astype(np.float32), np.array(tgt_pairs).astype(np.float32))
        # print('num inliers', np.sum(inliers))
        # # print('num inliers', np.sum(inliers))
        affine_transforms.append(affine_trans)
        
    depth_sorted_indices = np.arange(len(avg_depths))
    depth_sorted_indices = sorted(depth_sorted_indices, key=lambda x: avg_depths[x])
    # sorted_masks = []
    # print('warping stuff')
    for idx in depth_sorted_indices:
        # sorted_masks.append(mask[idx])        
        alpha_mask = filtered_segments[idx]['segmentation'][..., None] * (lost_regions < 0.5).astype(float)
        src_rgba = np.concatenate([src_array, alpha_mask, unsqueezed_depth], axis=-1)
        warp_dst = cv2.warpAffine(src_rgba, affine_transforms[idx], (src_array.shape[1], src_array.shape[0]))
        warped_mask = warp_dst[..., -2:-1] # this is warped alpha
        warped_depth = warp_dst[..., -1:]
        warped_rgb = warp_dst[...,:-2]
        
        good_z_region = warped_depth > z_buffer
        
        warped_mask = np.logical_and(warped_mask > 0.5, good_z_region).astype(float)
        
        kernel = np.ones((3,3), float)
        # print('og masked shape', warped_mask.shape)
        # warped_mask = cv2.erode(warped_mask,(5,5))[..., None]
        # print('eroded masked shape', warped_mask.shape)
        canvas_alpha += cv2.erode(warped_mask,kernel)[..., None]
        
        lost_regions += alpha_mask
        canvas = canvas * (1.0 - warped_mask) + warped_mask * warped_rgb # TODO check if need to dialate here
        z_buffer = z_buffer * (1.0 - warped_mask) + warped_mask * warped_depth # TODO check if need to dialate here    # print('max lost region', np.max(lost_regions))
    return canvas, canvas_alpha, lost_regions

def get_depth_from_array(img_t):
    img_arr = img_t.moveaxis(0, -1).cpu().numpy() * 1.0
    # print(img_arr.shape)
    img_arr *= 255.0
    img_arr = img_arr.astype(np.uint8)
    input_batch = processing_utils.depth_transform(img_arr).cuda()

    with torch.no_grad():
        prediction = processing_utils.midas(input_batch)

        prediction = torch.nn.functional.interpolate(
            prediction.unsqueeze(1),
            size=img_arr.shape[:2],
            mode="bicubic",
            align_corners=False,
        ).squeeze()

    output = prediction.cpu()
    return output


# %%

def main():
    print('starting main')
    video_folder = './example_videos'
    save_dir = pathlib.Path('./processed_data')
    process_video_folder(video_folder, save_dir)
        
def process_video_folder(video_folder, save_dir):
    all_counter = 0
    success_counter = 0

    # save_folder = pathlib.Path('/dev/shm/processed')        
    # save_dir = save_folder / foldername #pathlib.Path('/sensei-fs/users/halzayer/collage2photo/testing_partitioning_dilate_extreme')
    os.makedirs(save_dir, exist_ok=True)
    
    dataset = MomentsDataset(videos_folder=video_folder, num_frames=20, samples_per_video=5)
    batch_size = 4
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

    with torch.no_grad():
        for i, batch in tqdm.tqdm(enumerate(dataloader), total=len(dataset)//batch_size):
            frames_to_visualize = batch["frames"]
            bs = frames_to_visualize.shape[0]
            
            for j in range(bs):
                frames = frames_to_visualize[j]
                caption = batch["caption"][j]

                collage_init_time = time.time()
                out = collage_from_frames(frames)
                collage_finish_time = time.time()
                print('collage processing time', collage_finish_time - collage_init_time)
                all_counter += 1
                if out is not None:
                    src_image, tgt_image, splatted, collage, flow_mask, collage_mask = out
                    
                    splatted_rgb = splatted[...,:3]
                    splatted_grid = splatted[...,3:].astype(np.float16)

                    collage_rgb = collage[...,:3]
                    collage_grid = collage[...,3:].astype(np.float16)
                    success_counter += 1
                else:
                    continue

                id_str = f'{success_counter:08d}'

                src_path = str(save_dir / f'src_{id_str}.png')
                tgt_path = str(save_dir / f'tgt_{id_str}.png')
                flow_warped_path = str(save_dir / f'flow_warped_{id_str}.png')
                composite_path = str(save_dir / f'composite_{id_str}.png')
                flow_mask_path = str(save_dir / f'flow_mask_{id_str}.png')
                composite_mask_path = str(save_dir / f'composite_mask_{id_str}.png')
                
                flow_grid_path = str(save_dir / f'flow_warped_grid_{id_str}.npy')
                composite_grid_path = str(save_dir / f'composite_grid_{id_str}.npy')
                
                save_image(src_image, src_path)
                save_image(tgt_image, tgt_path)
                
                collage_pil = Image.fromarray((collage_rgb * 255).astype(np.uint8))
                collage_pil.save(composite_path)
                
                splatted_pil = Image.fromarray((splatted_rgb * 255).astype(np.uint8))
                splatted_pil.save(flow_warped_path)
                
                flow_mask_pil = Image.fromarray((flow_mask.astype(float) * 255).astype(np.uint8))
                flow_mask_pil.save(flow_mask_path)
                
                composite_mask_pil = Image.fromarray((collage_mask.astype(float) * 255).astype(np.uint8))
                composite_mask_pil.save(composite_mask_path)
                
                splatted_grid_t = torch.tensor(splatted_grid).moveaxis(-1, 0)
                splatted_grid_resized = torchvision.transforms.functional.resize(splatted_grid_t, (64,64))
                
                collage_grid_t = torch.tensor(collage_grid).moveaxis(-1, 0)
                collage_grid_resized = torchvision.transforms.functional.resize(collage_grid_t, (64,64))
                np.save(flow_grid_path, splatted_grid_resized.cpu().numpy())
                np.save(composite_grid_path, collage_grid_resized.cpu().numpy())

                del out
                del splatted_grid
                del collage_grid
                del frames

            del frames_to_visualize

#%%

if __name__ == '__main__':
    try:
        main()
    except Exception as e:
        print(e)
        print('process failed')