File size: 2,119 Bytes
38f08cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: wavlm-large-finetuned-iemocap
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wavlm-large-finetuned-iemocap
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1588
- Accuracy: 0.4811
- F1: 0.4602
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.3733 | 0.98 | 25 | 1.3723 | 0.2502 | 0.1002 |
| 1.2784 | 1.98 | 50 | 1.3130 | 0.3307 | 0.2503 |
| 1.2228 | 2.98 | 75 | 1.2485 | 0.3899 | 0.3398 |
| 1.1588 | 3.98 | 100 | 1.2129 | 0.4646 | 0.4650 |
| 1.1116 | 4.98 | 125 | 1.1941 | 0.4753 | 0.4655 |
| 1.1212 | 5.98 | 150 | 1.1688 | 0.4762 | 0.4639 |
| 1.0919 | 6.98 | 175 | 1.1574 | 0.4850 | 0.4710 |
| 1.0749 | 7.98 | 200 | 1.1612 | 0.4840 | 0.4639 |
| 1.0943 | 8.98 | 225 | 1.1586 | 0.4888 | 0.4677 |
| 1.0746 | 9.98 | 250 | 1.1588 | 0.4811 | 0.4602 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|