File size: 1,725 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# model settings
model = dict(
    type='RPN',
    pretrained='open-mmlab://detectron2/resnet50_caffe',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=3,
        strides=(1, 2, 2),
        dilations=(1, 1, 1),
        out_indices=(2, ),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=False),
        norm_eval=True,
        style='caffe'),
    neck=None,
    rpn_head=dict(
        type='RPNHead',
        in_channels=1024,
        feat_channels=1024,
        anchor_generator=dict(
            type='AnchorGenerator',
            scales=[2, 4, 8, 16, 32],
            ratios=[0.5, 1.0, 2.0],
            strides=[16]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
    # model training and testing settings
    train_cfg=dict(
        rpn=dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
                neg_iou_thr=0.3,
                min_pos_iou=0.3,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=256,
                pos_fraction=0.5,
                neg_pos_ub=-1,
                add_gt_as_proposals=False),
            allowed_border=0,
            pos_weight=-1,
            debug=False)),
    test_cfg=dict(
        rpn=dict(
            nms_pre=12000,
            max_per_img=2000,
            nms=dict(type='nms', iou_threshold=0.7),
            min_bbox_size=0)))