File size: 9,367 Bytes
a0db2f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_torch,
    require_vision,
    slow,
)

from .test_pipelines_common import ANY


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


@is_pipeline_test
@require_vision
class ZeroShotImageClassificationPipelineTests(unittest.TestCase):
    # Deactivating auto tests since we don't have a good MODEL_FOR_XX mapping,
    # and only CLIP would be there for now.
    # model_mapping = {CLIPConfig: CLIPModel}

    # def get_test_pipeline(self, model, tokenizer, processor):
    #     if tokenizer is None:
    #         # Side effect of no Fast Tokenizer class for these model, so skipping
    #         # But the slow tokenizer test should still run as they're quite small
    #         self.skipTest("No tokenizer available")
    #         return
    #         # return None, None

    #     image_classifier = ZeroShotImageClassificationPipeline(
    #         model=model, tokenizer=tokenizer, feature_extractor=processor
    #     )

    #     # test with a raw waveform
    #     image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    #     image2 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    #     return image_classifier, [image, image2]

    # def run_pipeline_test(self, pipe, examples):
    #     image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    #     outputs = pipe(image, candidate_labels=["A", "B"])
    #     self.assertEqual(outputs, {"text": ANY(str)})

    #     # Batching
    #     outputs = pipe([image] * 3, batch_size=2, candidate_labels=["A", "B"])

    @require_torch
    def test_small_model_pt(self):
        image_classifier = pipeline(
            model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification",
        )
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        output = image_classifier(image, candidate_labels=["a", "b", "c"])

        # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
        # python and torch versions.
        self.assertIn(
            nested_simplify(output),
            [
                [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
                [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
            ],
        )

        output = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2)
        self.assertEqual(
            nested_simplify(output),
            # Pipeline outputs are supposed to be deterministic and
            # So we could in theory have real values "A", "B", "C" instead
            # of ANY(str).
            # However it seems that in this particular case, the floating
            # scores are so close, we enter floating error approximation
            # and the order is not guaranteed anymore with batching.
            [
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
            ],
        )

    @require_tf
    def test_small_model_tf(self):
        image_classifier = pipeline(
            model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", framework="tf"
        )
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        output = image_classifier(image, candidate_labels=["a", "b", "c"])

        self.assertEqual(
            nested_simplify(output),
            [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
        )

        output = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2)
        self.assertEqual(
            nested_simplify(output),
            # Pipeline outputs are supposed to be deterministic and
            # So we could in theory have real values "A", "B", "C" instead
            # of ANY(str).
            # However it seems that in this particular case, the floating
            # scores are so close, we enter floating error approximation
            # and the order is not guaranteed anymore with batching.
            [
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
                [
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                    {"score": 0.333, "label": ANY(str)},
                ],
            ],
        )

    @slow
    @require_torch
    def test_large_model_pt(self):
        image_classifier = pipeline(
            task="zero-shot-image-classification",
            model="openai/clip-vit-base-patch32",
        )
        # This is an image of 2 cats with remotes and no planes
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        output = image_classifier(image, candidate_labels=["cat", "plane", "remote"])

        self.assertEqual(
            nested_simplify(output),
            [
                {"score": 0.511, "label": "remote"},
                {"score": 0.485, "label": "cat"},
                {"score": 0.004, "label": "plane"},
            ],
        )

        output = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2)
        self.assertEqual(
            nested_simplify(output),
            [
                [
                    {"score": 0.511, "label": "remote"},
                    {"score": 0.485, "label": "cat"},
                    {"score": 0.004, "label": "plane"},
                ],
            ]
            * 5,
        )

    @slow
    @require_tf
    def test_large_model_tf(self):
        image_classifier = pipeline(
            task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", framework="tf"
        )
        # This is an image of 2 cats with remotes and no planes
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        output = image_classifier(image, candidate_labels=["cat", "plane", "remote"])
        self.assertEqual(
            nested_simplify(output),
            [
                {"score": 0.511, "label": "remote"},
                {"score": 0.485, "label": "cat"},
                {"score": 0.004, "label": "plane"},
            ],
        )

        output = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2)
        self.assertEqual(
            nested_simplify(output),
            [
                [
                    {"score": 0.511, "label": "remote"},
                    {"score": 0.485, "label": "cat"},
                    {"score": 0.004, "label": "plane"},
                ],
            ]
            * 5,
        )