File size: 20,797 Bytes
a0db2f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import (
FEATURE_EXTRACTOR_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_MAPPING,
TF_MODEL_MAPPING,
FeatureExtractionPipeline,
LxmertConfig,
is_tf_available,
is_torch_available,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@is_pipeline_test
class FeatureExtractionPipelineTests(unittest.TestCase):
model_mapping = MODEL_MAPPING
tf_model_mapping = TF_MODEL_MAPPING
@require_torch
def test_small_model_pt(self):
feature_extractor = pipeline(
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
outputs = feature_extractor("This is a test")
self.assertEqual(
nested_simplify(outputs),
[[[2.287, 1.234, 0.042, 1.53, 1.306, 0.879, -0.526, -1.71, -1.276, 0.756, -0.775, -1.048, -0.25, -0.595, -0.137, -0.598, 2.022, -0.812, 0.284, -0.488, -0.391, -0.403, -0.525, -0.061, -0.228, 1.086, 0.378, -0.14, 0.599, -0.087, -2.259, -0.098], [1.676, 0.232, -1.508, -0.145, 1.798, -1.388, 1.331, -0.37, -0.939, 0.043, 0.06, -0.414, -1.408, 0.24, 0.622, -0.55, -0.569, 1.873, -0.706, 1.924, -0.254, 1.927, -0.423, 0.152, -0.952, 0.509, -0.496, -0.968, 0.093, -1.049, -0.65, 0.312], [0.207, -0.775, -1.822, 0.321, -0.71, -0.201, 0.3, 1.146, -0.233, -0.753, -0.305, 1.309, -1.47, -0.21, 1.802, -1.555, -1.175, 1.323, -0.303, 0.722, -0.076, 0.103, -1.406, 1.931, 0.091, 0.237, 1.172, 1.607, 0.253, -0.9, -1.068, 0.438], [0.615, 1.077, 0.171, -0.175, 1.3, 0.901, -0.653, -0.138, 0.341, -0.654, -0.184, -0.441, -0.424, 0.356, -0.075, 0.26, -1.023, 0.814, 0.524, -0.904, -0.204, -0.623, 1.234, -1.03, 2.594, 0.56, 1.831, -0.199, -1.508, -0.492, -1.687, -2.165], [0.129, 0.008, -1.279, -0.412, -0.004, 1.663, 0.196, 0.104, 0.123, 0.119, 0.635, 1.757, 2.334, -0.799, -1.626, -1.26, 0.595, -0.316, -1.399, 0.232, 0.264, 1.386, -1.171, -0.256, -0.256, -1.944, 1.168, -0.368, -0.714, -0.51, 0.454, 1.148], [-0.32, 0.29, -1.309, -0.177, 0.453, 0.636, -0.024, 0.509, 0.931, -1.754, -1.575, 0.786, 0.046, -1.165, -1.416, 1.373, 1.293, -0.285, -1.541, -1.186, -0.106, -0.994, 2.001, 0.972, -0.02, 1.654, -0.236, 0.643, 1.02, 0.572, -0.914, -0.154], [0.7, -0.937, 0.441, 0.25, 0.78, -0.022, 0.282, -0.095, 1.558, -0.336, 1.706, 0.884, 1.28, 0.198, -0.796, 1.218, -1.769, 1.197, -0.342, -0.177, -0.645, 1.364, 0.008, -0.597, -0.484, -2.772, -0.696, -0.632, -0.34, -1.527, -0.562, 0.862], [2.504, 0.831, -1.271, -0.033, 0.298, -0.735, 1.339, 1.74, 0.233, -1.424, -0.819, -0.761, 0.291, 0.853, -0.092, -0.885, 0.164, 1.025, 0.907, 0.749, -1.515, -0.545, -1.365, 0.271, 0.034, -2.005, 0.031, 0.244, 0.621, 0.176, 0.336, -1.196], [-0.711, 0.591, -1.001, -0.946, 0.784, -1.66, 1.545, 0.799, -0.857, 1.148, 0.213, -0.285, 0.464, -0.139, 0.79, -1.663, -1.121, 0.575, -0.178, -0.508, 1.565, -0.242, -0.346, 1.024, -1.135, -0.158, -2.101, 0.275, 2.009, -0.425, 0.716, 0.981], [0.912, -1.186, -0.846, -0.421, -1.315, -0.827, 0.309, 0.533, 1.029, -2.343, 1.513, -1.238, 1.487, -0.849, 0.896, -0.927, -0.459, 0.159, 0.177, 0.873, 0.935, 1.433, -0.485, 0.737, 1.327, -0.338, 1.608, -0.47, -0.445, -1.118, -0.213, -0.446], [-0.434, -1.362, -1.098, -1.068, 1.507, 0.003, 0.413, -0.395, 0.897, -0.237, 1.405, -0.344, 1.693, 0.677, 0.097, -0.257, -0.602, 1.026, -1.229, 0.855, -0.713, 1.014, 0.443, 0.238, 0.425, -2.184, 1.933, -1.157, -1.132, -0.597, -0.785, 0.967], [0.58, -0.971, 0.789, -0.468, -0.576, 1.779, 1.747, 1.715, -1.939, 0.125, 0.656, -0.042, -1.024, -1.767, 0.107, -0.408, -0.866, -1.774, 1.248, 0.939, -0.033, 1.523, 1.168, -0.744, 0.209, -0.168, -0.316, 0.207, -0.432, 0.047, -0.646, -0.664], [-0.185, -0.613, -1.695, 1.602, -0.32, -0.277, 0.967, 0.728, -0.965, -0.234, 1.069, -0.63, -1.631, 0.711, 0.426, 1.298, -0.191, -0.467, -0.771, 0.971, -0.118, -1.577, -2.064, -0.055, -0.59, 0.642, -0.997, 1.251, 0.538, 1.367, 0.106, 1.704]]]) # fmt: skip
@require_tf
def test_small_model_tf(self):
feature_extractor = pipeline(
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
outputs = feature_extractor("This is a test")
self.assertEqual(
nested_simplify(outputs),
[[[2.287, 1.234, 0.042, 1.53, 1.306, 0.879, -0.526, -1.71, -1.276, 0.756, -0.775, -1.048, -0.25, -0.595, -0.137, -0.598, 2.022, -0.812, 0.284, -0.488, -0.391, -0.403, -0.525, -0.061, -0.228, 1.086, 0.378, -0.14, 0.599, -0.087, -2.259, -0.098], [1.676, 0.232, -1.508, -0.145, 1.798, -1.388, 1.331, -0.37, -0.939, 0.043, 0.06, -0.414, -1.408, 0.24, 0.622, -0.55, -0.569, 1.873, -0.706, 1.924, -0.254, 1.927, -0.423, 0.152, -0.952, 0.509, -0.496, -0.968, 0.093, -1.049, -0.65, 0.312], [0.207, -0.775, -1.822, 0.321, -0.71, -0.201, 0.3, 1.146, -0.233, -0.753, -0.305, 1.309, -1.47, -0.21, 1.802, -1.555, -1.175, 1.323, -0.303, 0.722, -0.076, 0.103, -1.406, 1.931, 0.091, 0.237, 1.172, 1.607, 0.253, -0.9, -1.068, 0.438], [0.615, 1.077, 0.171, -0.175, 1.3, 0.901, -0.653, -0.138, 0.341, -0.654, -0.184, -0.441, -0.424, 0.356, -0.075, 0.26, -1.023, 0.814, 0.524, -0.904, -0.204, -0.623, 1.234, -1.03, 2.594, 0.56, 1.831, -0.199, -1.508, -0.492, -1.687, -2.165], [0.129, 0.008, -1.279, -0.412, -0.004, 1.663, 0.196, 0.104, 0.123, 0.119, 0.635, 1.757, 2.334, -0.799, -1.626, -1.26, 0.595, -0.316, -1.399, 0.232, 0.264, 1.386, -1.171, -0.256, -0.256, -1.944, 1.168, -0.368, -0.714, -0.51, 0.454, 1.148], [-0.32, 0.29, -1.309, -0.177, 0.453, 0.636, -0.024, 0.509, 0.931, -1.754, -1.575, 0.786, 0.046, -1.165, -1.416, 1.373, 1.293, -0.285, -1.541, -1.186, -0.106, -0.994, 2.001, 0.972, -0.02, 1.654, -0.236, 0.643, 1.02, 0.572, -0.914, -0.154], [0.7, -0.937, 0.441, 0.25, 0.78, -0.022, 0.282, -0.095, 1.558, -0.336, 1.706, 0.884, 1.28, 0.198, -0.796, 1.218, -1.769, 1.197, -0.342, -0.177, -0.645, 1.364, 0.008, -0.597, -0.484, -2.772, -0.696, -0.632, -0.34, -1.527, -0.562, 0.862], [2.504, 0.831, -1.271, -0.033, 0.298, -0.735, 1.339, 1.74, 0.233, -1.424, -0.819, -0.761, 0.291, 0.853, -0.092, -0.885, 0.164, 1.025, 0.907, 0.749, -1.515, -0.545, -1.365, 0.271, 0.034, -2.005, 0.031, 0.244, 0.621, 0.176, 0.336, -1.196], [-0.711, 0.591, -1.001, -0.946, 0.784, -1.66, 1.545, 0.799, -0.857, 1.148, 0.213, -0.285, 0.464, -0.139, 0.79, -1.663, -1.121, 0.575, -0.178, -0.508, 1.565, -0.242, -0.346, 1.024, -1.135, -0.158, -2.101, 0.275, 2.009, -0.425, 0.716, 0.981], [0.912, -1.186, -0.846, -0.421, -1.315, -0.827, 0.309, 0.533, 1.029, -2.343, 1.513, -1.238, 1.487, -0.849, 0.896, -0.927, -0.459, 0.159, 0.177, 0.873, 0.935, 1.433, -0.485, 0.737, 1.327, -0.338, 1.608, -0.47, -0.445, -1.118, -0.213, -0.446], [-0.434, -1.362, -1.098, -1.068, 1.507, 0.003, 0.413, -0.395, 0.897, -0.237, 1.405, -0.344, 1.693, 0.677, 0.097, -0.257, -0.602, 1.026, -1.229, 0.855, -0.713, 1.014, 0.443, 0.238, 0.425, -2.184, 1.933, -1.157, -1.132, -0.597, -0.785, 0.967], [0.58, -0.971, 0.789, -0.468, -0.576, 1.779, 1.747, 1.715, -1.939, 0.125, 0.656, -0.042, -1.024, -1.767, 0.107, -0.408, -0.866, -1.774, 1.248, 0.939, -0.033, 1.523, 1.168, -0.744, 0.209, -0.168, -0.316, 0.207, -0.432, 0.047, -0.646, -0.664], [-0.185, -0.613, -1.695, 1.602, -0.32, -0.277, 0.967, 0.728, -0.965, -0.234, 1.069, -0.63, -1.631, 0.711, 0.426, 1.298, -0.191, -0.467, -0.771, 0.971, -0.118, -1.577, -2.064, -0.055, -0.59, 0.642, -0.997, 1.251, 0.538, 1.367, 0.106, 1.704]]]) # fmt: skip
@require_torch
def test_tokenization_small_model_pt(self):
feature_extractor = pipeline(
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
# test with empty parameters
outputs = feature_extractor("This is a test")
self.assertEqual(
nested_simplify(outputs),
[[[2.287, 1.234, 0.042, 1.53, 1.306, 0.879, -0.526, -1.71, -1.276, 0.756, -0.775, -1.048, -0.25, -0.595, -0.137, -0.598, 2.022, -0.812, 0.284, -0.488, -0.391, -0.403, -0.525, -0.061, -0.228, 1.086, 0.378, -0.14, 0.599, -0.087, -2.259, -0.098], [1.676, 0.232, -1.508, -0.145, 1.798, -1.388, 1.331, -0.37, -0.939, 0.043, 0.06, -0.414, -1.408, 0.24, 0.622, -0.55, -0.569, 1.873, -0.706, 1.924, -0.254, 1.927, -0.423, 0.152, -0.952, 0.509, -0.496, -0.968, 0.093, -1.049, -0.65, 0.312], [0.207, -0.775, -1.822, 0.321, -0.71, -0.201, 0.3, 1.146, -0.233, -0.753, -0.305, 1.309, -1.47, -0.21, 1.802, -1.555, -1.175, 1.323, -0.303, 0.722, -0.076, 0.103, -1.406, 1.931, 0.091, 0.237, 1.172, 1.607, 0.253, -0.9, -1.068, 0.438], [0.615, 1.077, 0.171, -0.175, 1.3, 0.901, -0.653, -0.138, 0.341, -0.654, -0.184, -0.441, -0.424, 0.356, -0.075, 0.26, -1.023, 0.814, 0.524, -0.904, -0.204, -0.623, 1.234, -1.03, 2.594, 0.56, 1.831, -0.199, -1.508, -0.492, -1.687, -2.165], [0.129, 0.008, -1.279, -0.412, -0.004, 1.663, 0.196, 0.104, 0.123, 0.119, 0.635, 1.757, 2.334, -0.799, -1.626, -1.26, 0.595, -0.316, -1.399, 0.232, 0.264, 1.386, -1.171, -0.256, -0.256, -1.944, 1.168, -0.368, -0.714, -0.51, 0.454, 1.148], [-0.32, 0.29, -1.309, -0.177, 0.453, 0.636, -0.024, 0.509, 0.931, -1.754, -1.575, 0.786, 0.046, -1.165, -1.416, 1.373, 1.293, -0.285, -1.541, -1.186, -0.106, -0.994, 2.001, 0.972, -0.02, 1.654, -0.236, 0.643, 1.02, 0.572, -0.914, -0.154], [0.7, -0.937, 0.441, 0.25, 0.78, -0.022, 0.282, -0.095, 1.558, -0.336, 1.706, 0.884, 1.28, 0.198, -0.796, 1.218, -1.769, 1.197, -0.342, -0.177, -0.645, 1.364, 0.008, -0.597, -0.484, -2.772, -0.696, -0.632, -0.34, -1.527, -0.562, 0.862], [2.504, 0.831, -1.271, -0.033, 0.298, -0.735, 1.339, 1.74, 0.233, -1.424, -0.819, -0.761, 0.291, 0.853, -0.092, -0.885, 0.164, 1.025, 0.907, 0.749, -1.515, -0.545, -1.365, 0.271, 0.034, -2.005, 0.031, 0.244, 0.621, 0.176, 0.336, -1.196], [-0.711, 0.591, -1.001, -0.946, 0.784, -1.66, 1.545, 0.799, -0.857, 1.148, 0.213, -0.285, 0.464, -0.139, 0.79, -1.663, -1.121, 0.575, -0.178, -0.508, 1.565, -0.242, -0.346, 1.024, -1.135, -0.158, -2.101, 0.275, 2.009, -0.425, 0.716, 0.981], [0.912, -1.186, -0.846, -0.421, -1.315, -0.827, 0.309, 0.533, 1.029, -2.343, 1.513, -1.238, 1.487, -0.849, 0.896, -0.927, -0.459, 0.159, 0.177, 0.873, 0.935, 1.433, -0.485, 0.737, 1.327, -0.338, 1.608, -0.47, -0.445, -1.118, -0.213, -0.446], [-0.434, -1.362, -1.098, -1.068, 1.507, 0.003, 0.413, -0.395, 0.897, -0.237, 1.405, -0.344, 1.693, 0.677, 0.097, -0.257, -0.602, 1.026, -1.229, 0.855, -0.713, 1.014, 0.443, 0.238, 0.425, -2.184, 1.933, -1.157, -1.132, -0.597, -0.785, 0.967], [0.58, -0.971, 0.789, -0.468, -0.576, 1.779, 1.747, 1.715, -1.939, 0.125, 0.656, -0.042, -1.024, -1.767, 0.107, -0.408, -0.866, -1.774, 1.248, 0.939, -0.033, 1.523, 1.168, -0.744, 0.209, -0.168, -0.316, 0.207, -0.432, 0.047, -0.646, -0.664], [-0.185, -0.613, -1.695, 1.602, -0.32, -0.277, 0.967, 0.728, -0.965, -0.234, 1.069, -0.63, -1.631, 0.711, 0.426, 1.298, -0.191, -0.467, -0.771, 0.971, -0.118, -1.577, -2.064, -0.055, -0.59, 0.642, -0.997, 1.251, 0.538, 1.367, 0.106, 1.704]]]) # fmt: skip
# test with various tokenizer parameters
tokenize_kwargs = {"max_length": 3}
outputs = feature_extractor("This is a test", tokenize_kwargs=tokenize_kwargs)
self.assertEqual(np.squeeze(outputs).shape, (3, 32))
tokenize_kwargs = {"truncation": True, "padding": True, "max_length": 4}
outputs = feature_extractor(
["This is a test", "This", "This is", "This is a", "This is a test test test test"],
tokenize_kwargs=tokenize_kwargs,
)
self.assertEqual(np.squeeze(outputs).shape, (5, 4, 32))
tokenize_kwargs = {"padding": True, "max_length": 4}
outputs = feature_extractor(
["This is a test", "This", "This is", "This is a", "This is a test test test test"],
truncation=True,
tokenize_kwargs=tokenize_kwargs,
)
self.assertEqual(np.squeeze(outputs).shape, (5, 4, 32))
# raise value error if truncation parameter given for two places
tokenize_kwargs = {"truncation": True}
with self.assertRaises(ValueError):
_ = feature_extractor(
["This is a test", "This", "This is", "This is a", "This is a test test test test"],
truncation=True,
tokenize_kwargs=tokenize_kwargs,
)
@require_tf
def test_tokenization_small_model_tf(self):
feature_extractor = pipeline(
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
# test with empty parameters
outputs = feature_extractor("This is a test")
self.assertEqual(
nested_simplify(outputs),
[[[2.287, 1.234, 0.042, 1.53, 1.306, 0.879, -0.526, -1.71, -1.276, 0.756, -0.775, -1.048, -0.25, -0.595, -0.137, -0.598, 2.022, -0.812, 0.284, -0.488, -0.391, -0.403, -0.525, -0.061, -0.228, 1.086, 0.378, -0.14, 0.599, -0.087, -2.259, -0.098], [1.676, 0.232, -1.508, -0.145, 1.798, -1.388, 1.331, -0.37, -0.939, 0.043, 0.06, -0.414, -1.408, 0.24, 0.622, -0.55, -0.569, 1.873, -0.706, 1.924, -0.254, 1.927, -0.423, 0.152, -0.952, 0.509, -0.496, -0.968, 0.093, -1.049, -0.65, 0.312], [0.207, -0.775, -1.822, 0.321, -0.71, -0.201, 0.3, 1.146, -0.233, -0.753, -0.305, 1.309, -1.47, -0.21, 1.802, -1.555, -1.175, 1.323, -0.303, 0.722, -0.076, 0.103, -1.406, 1.931, 0.091, 0.237, 1.172, 1.607, 0.253, -0.9, -1.068, 0.438], [0.615, 1.077, 0.171, -0.175, 1.3, 0.901, -0.653, -0.138, 0.341, -0.654, -0.184, -0.441, -0.424, 0.356, -0.075, 0.26, -1.023, 0.814, 0.524, -0.904, -0.204, -0.623, 1.234, -1.03, 2.594, 0.56, 1.831, -0.199, -1.508, -0.492, -1.687, -2.165], [0.129, 0.008, -1.279, -0.412, -0.004, 1.663, 0.196, 0.104, 0.123, 0.119, 0.635, 1.757, 2.334, -0.799, -1.626, -1.26, 0.595, -0.316, -1.399, 0.232, 0.264, 1.386, -1.171, -0.256, -0.256, -1.944, 1.168, -0.368, -0.714, -0.51, 0.454, 1.148], [-0.32, 0.29, -1.309, -0.177, 0.453, 0.636, -0.024, 0.509, 0.931, -1.754, -1.575, 0.786, 0.046, -1.165, -1.416, 1.373, 1.293, -0.285, -1.541, -1.186, -0.106, -0.994, 2.001, 0.972, -0.02, 1.654, -0.236, 0.643, 1.02, 0.572, -0.914, -0.154], [0.7, -0.937, 0.441, 0.25, 0.78, -0.022, 0.282, -0.095, 1.558, -0.336, 1.706, 0.884, 1.28, 0.198, -0.796, 1.218, -1.769, 1.197, -0.342, -0.177, -0.645, 1.364, 0.008, -0.597, -0.484, -2.772, -0.696, -0.632, -0.34, -1.527, -0.562, 0.862], [2.504, 0.831, -1.271, -0.033, 0.298, -0.735, 1.339, 1.74, 0.233, -1.424, -0.819, -0.761, 0.291, 0.853, -0.092, -0.885, 0.164, 1.025, 0.907, 0.749, -1.515, -0.545, -1.365, 0.271, 0.034, -2.005, 0.031, 0.244, 0.621, 0.176, 0.336, -1.196], [-0.711, 0.591, -1.001, -0.946, 0.784, -1.66, 1.545, 0.799, -0.857, 1.148, 0.213, -0.285, 0.464, -0.139, 0.79, -1.663, -1.121, 0.575, -0.178, -0.508, 1.565, -0.242, -0.346, 1.024, -1.135, -0.158, -2.101, 0.275, 2.009, -0.425, 0.716, 0.981], [0.912, -1.186, -0.846, -0.421, -1.315, -0.827, 0.309, 0.533, 1.029, -2.343, 1.513, -1.238, 1.487, -0.849, 0.896, -0.927, -0.459, 0.159, 0.177, 0.873, 0.935, 1.433, -0.485, 0.737, 1.327, -0.338, 1.608, -0.47, -0.445, -1.118, -0.213, -0.446], [-0.434, -1.362, -1.098, -1.068, 1.507, 0.003, 0.413, -0.395, 0.897, -0.237, 1.405, -0.344, 1.693, 0.677, 0.097, -0.257, -0.602, 1.026, -1.229, 0.855, -0.713, 1.014, 0.443, 0.238, 0.425, -2.184, 1.933, -1.157, -1.132, -0.597, -0.785, 0.967], [0.58, -0.971, 0.789, -0.468, -0.576, 1.779, 1.747, 1.715, -1.939, 0.125, 0.656, -0.042, -1.024, -1.767, 0.107, -0.408, -0.866, -1.774, 1.248, 0.939, -0.033, 1.523, 1.168, -0.744, 0.209, -0.168, -0.316, 0.207, -0.432, 0.047, -0.646, -0.664], [-0.185, -0.613, -1.695, 1.602, -0.32, -0.277, 0.967, 0.728, -0.965, -0.234, 1.069, -0.63, -1.631, 0.711, 0.426, 1.298, -0.191, -0.467, -0.771, 0.971, -0.118, -1.577, -2.064, -0.055, -0.59, 0.642, -0.997, 1.251, 0.538, 1.367, 0.106, 1.704]]]) # fmt: skip
# test with various tokenizer parameters
tokenize_kwargs = {"max_length": 3}
outputs = feature_extractor("This is a test", tokenize_kwargs=tokenize_kwargs)
self.assertEqual(np.squeeze(outputs).shape, (3, 32))
tokenize_kwargs = {"truncation": True, "padding": True, "max_length": 4}
outputs = feature_extractor(
["This is a test", "This", "This is", "This is a", "This is a test test test test"],
tokenize_kwargs=tokenize_kwargs,
)
self.assertEqual(np.squeeze(outputs).shape, (5, 4, 32))
tokenize_kwargs = {"padding": True, "max_length": 4}
outputs = feature_extractor(
["This is a test", "This", "This is", "This is a", "This is a test test test test"],
truncation=True,
tokenize_kwargs=tokenize_kwargs,
)
self.assertEqual(np.squeeze(outputs).shape, (5, 4, 32))
# raise value error if truncation parameter given for two places
tokenize_kwargs = {"truncation": True}
with self.assertRaises(ValueError):
_ = feature_extractor(
["This is a test", "This", "This is", "This is a", "This is a test test test test"],
truncation=True,
tokenize_kwargs=tokenize_kwargs,
)
@require_torch
def test_return_tensors_pt(self):
feature_extractor = pipeline(
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
outputs = feature_extractor("This is a test", return_tensors=True)
self.assertTrue(torch.is_tensor(outputs))
@require_tf
def test_return_tensors_tf(self):
feature_extractor = pipeline(
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
outputs = feature_extractor("This is a test", return_tensors=True)
self.assertTrue(tf.is_tensor(outputs))
def get_shape(self, input_, shape=None):
if shape is None:
shape = []
if isinstance(input_, list):
subshapes = [self.get_shape(in_, shape) for in_ in input_]
if all(s == 0 for s in subshapes):
shape.append(len(input_))
else:
subshape = subshapes[0]
shape = [len(input_), *subshape]
elif isinstance(input_, float):
return 0
else:
raise ValueError("We expect lists of floats, nothing else")
return shape
def get_test_pipeline(self, model, tokenizer, processor):
if tokenizer is None:
self.skipTest("No tokenizer")
return
elif (
type(model.config) in FEATURE_EXTRACTOR_MAPPING
or isinstance(model.config, LxmertConfig)
or type(model.config) in IMAGE_PROCESSOR_MAPPING
):
self.skipTest("This is a bimodal model, we need to find a more consistent way to switch on those models.")
return
elif model.config.is_encoder_decoder:
self.skipTest(
"""encoder_decoder models are trickier for this pipeline.
Do we want encoder + decoder inputs to get some featues?
Do we want encoder only features ?
For now ignore those.
"""
)
return
feature_extractor = FeatureExtractionPipeline(model=model, tokenizer=tokenizer, feature_extractor=processor)
return feature_extractor, ["This is a test", "This is another test"]
def run_pipeline_test(self, feature_extractor, examples):
outputs = feature_extractor("This is a test")
shape = self.get_shape(outputs)
self.assertEqual(shape[0], 1)
# If we send too small input
# there's a bug within FunnelModel (output with shape [1, 4, 2, 1] doesn't match the broadcast shape [1, 4, 2, 2])
outputs = feature_extractor(["This is a test", "Another longer test"])
shape = self.get_shape(outputs)
self.assertEqual(shape[0], 2)
outputs = feature_extractor("This is a test" * 100, truncation=True)
shape = self.get_shape(outputs)
self.assertEqual(shape[0], 1)
|