File size: 10,736 Bytes
a0db2f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import json
import logging
import os
import sys
from unittest import skip
from unittest.mock import patch

import tensorflow as tf

from transformers.testing_utils import TestCasePlus, get_gpu_count, slow


SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
        "multiple-choice",
        "question-answering",
        "summarization",
        "translation",
        "image-classification",
    ]
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
    import run_clm
    import run_image_classification
    import run_mlm
    import run_ner
    import run_qa as run_squad
    import run_summarization
    import run_swag
    import run_text_classification
    import run_translation


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()


def get_setup_file():
    parser = argparse.ArgumentParser()
    parser.add_argument("-f")
    args = parser.parse_args()
    return args.f


def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


def is_cuda_available():
    return bool(tf.config.list_physical_devices("GPU"))


stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class ExamplesTests(TestCasePlus):
    @skip("Skipping until shape inference for to_tf_dataset PR is merged.")
    def test_run_text_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_text_classification.py
            --model_name_or_path distilbert-base-uncased
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
            --do_train
            --do_eval
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
            """.split()

        if is_cuda_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_text_classification.main()
            # Reset the mixed precision policy so we don't break other tests
            tf.keras.mixed_precision.set_global_policy("float32")
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)

    def test_run_clm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        if len(tf.config.list_physical_devices("GPU")) > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        with patch.object(sys, "argv", testargs):
            run_clm.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_perplexity"], 100)

    def test_run_mlm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mlm.py
            --model_name_or_path distilroberta-base
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --max_seq_length 64
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --prediction_loss_only
            --num_train_epochs=1
            --learning_rate=1e-4
        """.split()

        with patch.object(sys, "argv", testargs):
            run_mlm.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_perplexity"], 42)

    def test_run_ner(self):
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
            --num_train_epochs={epochs}
            --seed 7
        """.split()

        with patch.object(sys, "argv", testargs):
            run_ner.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["accuracy"], 0.75)

    def test_run_squad(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_qa.py
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["f1"], 30)
            self.assertGreaterEqual(result["exact"], 30)

    def test_run_swag(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
            run_swag.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["val_accuracy"], 0.8)

    @slow
    def test_run_summarization(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_summarization.py
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
            run_summarization.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["rouge1"], 10)
            self.assertGreaterEqual(result["rouge2"], 2)
            self.assertGreaterEqual(result["rougeL"], 7)
            self.assertGreaterEqual(result["rougeLsum"], 7)

    @slow
    def test_run_translation(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_translation.py
            --model_name_or_path Rocketknight1/student_marian_en_ro_6_1
            --source_lang en
            --target_lang ro
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --num_train_epochs 12
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
            run_translation.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["bleu"], 30)

    def test_run_image_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --model_name_or_path microsoft/resnet-18
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --dataloader_num_workers 16
            --num_train_epochs 2
            --train_val_split 0.1
            --seed 42
            --ignore_mismatched_sizes True
            """.split()

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["accuracy"], 0.7)