File size: 29,058 Bytes
a0db2f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import logging
import math
import os
from pathlib import Path
import datasets
import numpy as np
import torch
from accelerate import Accelerator, DistributedType
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from tqdm.auto import tqdm
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
SchedulerType,
get_scheduler,
)
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry
from transformers.utils.versions import require_version
""" Pre-training a 🤗 Transformers model for simple masked image modeling (SimMIM)
without using HuggingFace Trainer.
Any model supported by the AutoModelForMaskedImageModeling API can be used.
"""
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.32.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def parse_args():
parser = argparse.ArgumentParser(
description="Finetune a transformers model on a simple Masked Image Modeling task"
)
parser.add_argument(
"--dataset_name",
type=str,
default="cifar10",
help="Name of a dataset from the datasets package",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--image_column_name",
type=str,
default=None,
help="The column name of the images in the files. If not set, will try to use 'image' or 'img'.",
)
parser.add_argument(
"--train_dir",
type=str,
default=None,
help="A folder containing the training data.",
)
parser.add_argument(
"--validation_dir",
type=None,
default=None,
help="A folder containing the validation data.",
)
parser.add_argument(
"--train_val_split",
type=float,
default=0.15,
help="Percent to split off of train for validation.",
)
parser.add_argument(
"--mask_patch_size",
type=int,
default=32,
help="The size of the square patches to use for masking.",
)
parser.add_argument(
"--mask_ratio",
type=float,
default=0.6,
help="Percentage of patches to mask.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
),
)
parser.add_argument(
"--model_name_or_path",
type=str,
default=None,
help=(
"The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a "
"checkpoint identifier on the hub. "
"Don't set if you want to train a model from scratch."
),
)
parser.add_argument(
"--model_type",
type=str,
default=None,
help="If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES),
)
parser.add_argument(
"--config_name_or_path",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--config_overrides",
type=str,
default=None,
help=(
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
),
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="Where do you want to store (cache) the pretrained models/datasets downloaded from the hub",
)
parser.add_argument(
"--model_revision",
type=str,
default="main",
help="The specific model version to use (can be a branch name, tag name or commit id).",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--image_processor_name",
type=str,
default=None,
help="Name or path of preprocessor config.",
)
parser.add_argument(
"--use_auth_token",
type=bool,
default=False,
help=(
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
),
)
parser.add_argument(
"--image_size",
type=int,
default=None,
help="The size (resolution) of each image. If not specified, will use `image_size` of the configuration.",
)
parser.add_argument(
"--patch_size",
type=int,
default=None,
help="The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.",
)
parser.add_argument(
"--encoder_stride",
type=int,
default=None,
help={"help": "Stride to use for the encoder."},
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for reproducible training.",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="The initial learning rate for [`AdamW`] optimizer.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.0,
help="Weight decay to use.",
)
parser.add_argument(
"--num_train_epochs",
type=float,
default=3.0,
help="Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training).",
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--output_dir",
type=str,
default=None,
help="Where to store the final model.",
)
args = parser.parse_args()
# Sanity checks
data_files = {}
if args.train_dir is not None:
data_files["train"] = args.train_dir
if args.validation_dir is not None:
data_files["val"] = args.validation_dir
args.data_files = data_files if data_files else None
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
class MaskGenerator:
"""
A class to generate boolean masks for the pretraining task.
A mask is a 1D tensor of shape (model_patch_size**2,) where the value is either 0 or 1,
where 1 indicates "masked".
"""
def __init__(self, input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6):
self.input_size = input_size
self.mask_patch_size = mask_patch_size
self.model_patch_size = model_patch_size
self.mask_ratio = mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError("Input size must be divisible by mask patch size")
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError("Mask patch size must be divisible by model patch size")
self.rand_size = self.input_size // self.mask_patch_size
self.scale = self.mask_patch_size // self.model_patch_size
self.token_count = self.rand_size**2
self.mask_count = int(np.ceil(self.token_count * self.mask_ratio))
def __call__(self):
mask_idx = np.random.permutation(self.token_count)[: self.mask_count]
mask = np.zeros(self.token_count, dtype=int)
mask[mask_idx] = 1
mask = mask.reshape((self.rand_size, self.rand_size))
mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1)
return torch.tensor(mask.flatten())
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
mask = torch.stack([example["mask"] for example in examples])
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mim_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
**accelerator_log_kwargs,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Initialize our dataset.
ds = load_dataset(
args.dataset_name,
args.dataset_config_name,
data_files=args.data_files,
cache_dir=args.cache_dir,
use_auth_token=True if args.use_auth_token else None,
)
# If we don't have a validation split, split off a percentage of train as validation.
args.train_val_split = None if "validation" in ds.keys() else args.train_val_split
if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
split = ds["train"].train_test_split(args.train_val_split)
ds["train"] = split["train"]
ds["validation"] = split["test"]
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": args.cache_dir,
"revision": args.model_revision,
"use_auth_token": True if args.use_auth_token else None,
}
if args.config_name_or_path:
config = AutoConfig.from_pretrained(args.config_name_or_path, **config_kwargs)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.config_overrides is not None:
logger.info(f"Overriding config: {args.config_overrides}")
config.update_from_string(args.config_overrides)
logger.info(f"New config: {config}")
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(config, "decoder_type"):
config.decoder_type = "simmim"
# adapt config
args.image_size = args.image_size if args.image_size is not None else config.image_size
args.patch_size = args.patch_size if args.patch_size is not None else config.patch_size
args.encoder_stride = args.encoder_stride if args.encoder_stride is not None else config.encoder_stride
config.update(
{
"image_size": args.image_size,
"patch_size": args.patch_size,
"encoder_stride": args.encoder_stride,
}
)
# create image processor
if args.image_processor_name:
image_processor = AutoImageProcessor.from_pretrained(args.image_processor_name, **config_kwargs)
elif args.model_name_or_path:
image_processor = AutoImageProcessor.from_pretrained(args.model_name_or_path, **config_kwargs)
else:
IMAGE_PROCESSOR_TYPES = {
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
image_processor = IMAGE_PROCESSOR_TYPES[args.model_type]()
# create model
if args.model_name_or_path:
model = AutoModelForMaskedImageModeling.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir,
revision=args.model_revision,
use_auth_token=True if args.use_auth_token else None,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForMaskedImageModeling.from_config(config)
column_names = ds["train"].column_names
if args.image_column_name is not None:
image_column_name = args.image_column_name
elif "image" in column_names:
image_column_name = "image"
elif "img" in column_names:
image_column_name = "img"
else:
image_column_name = column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
transforms = Compose(
[
Lambda(lambda img: img.convert("RGB")),
RandomResizedCrop(args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
]
)
# create mask generator
mask_generator = MaskGenerator(
input_size=args.image_size,
mask_patch_size=args.mask_patch_size,
model_patch_size=args.patch_size,
mask_ratio=args.mask_ratio,
)
def preprocess_images(examples):
"""Preprocess a batch of images by applying transforms + creating a corresponding mask, indicating
which patches to mask."""
examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]]
examples["mask"] = [mask_generator() for i in range(len(examples[image_column_name]))]
return examples
if args.max_train_samples is not None:
ds["train"] = ds["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
ds["train"].set_transform(preprocess_images)
if args.max_eval_samples is not None:
ds["validation"] = ds["validation"].shuffle(seed=args.seed).select(range(args.max_eval_samples))
# Set the validation transforms
ds["validation"].set_transform(preprocess_images)
# DataLoaders creation:
train_dataloader = DataLoader(
ds["train"],
shuffle=True,
collate_fn=collate_fn,
batch_size=args.per_device_train_batch_size,
)
eval_dataloader = DataLoader(
ds["validation"],
collate_fn=collate_fn,
batch_size=args.per_device_eval_batch_size,
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model,
optimizer,
train_dataloader,
eval_dataloader,
lr_scheduler,
)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("mim_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(ds['train'])}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(int(args.max_train_steps)), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps }"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size)))
losses = torch.cat(losses)
eval_loss = torch.mean(losses)
logger.info(f"epoch {epoch}: eval_loss: {eval_loss}")
if args.with_tracking:
accelerator.log(
{
"eval_loss": eval_loss,
"train_loss": total_loss.item() / len(train_dataloader),
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.with_tracking:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
if __name__ == "__main__":
main()
|