File size: 6,205 Bytes
a0db2f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model evaluation script.
Adapted from https://github.com/kimiyoung/transformer-xl.
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
This script with default values evaluates a pretrained Transformer-XL on WikiText 103
"""
import argparse
import logging
import math
import time
import torch
from transformers import TransfoXLCorpus, TransfoXLLMHeadModel
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(description="PyTorch Transformer Language Model")
parser.add_argument("--model_name", type=str, default="transfo-xl-wt103", help="pretrained model name")
parser.add_argument(
"--split", type=str, default="test", choices=["all", "valid", "test"], help="which split to evaluate"
)
parser.add_argument("--batch_size", type=int, default=10, help="batch size")
parser.add_argument("--tgt_len", type=int, default=128, help="number of tokens to predict")
parser.add_argument("--ext_len", type=int, default=0, help="length of the extended context")
parser.add_argument("--mem_len", type=int, default=1600, help="length of the retained previous heads")
parser.add_argument("--clamp_len", type=int, default=1000, help="max positional embedding index")
parser.add_argument("--no_cuda", action="store_true", help="Do not use CUDA even though CUA is available")
parser.add_argument("--work_dir", type=str, required=True, help="path to the work_dir")
parser.add_argument("--no_log", action="store_true", help="do not log the eval result")
parser.add_argument("--same_length", action="store_true", help="set same length attention with masking")
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
args = parser.parse_args()
assert args.ext_len >= 0, "extended context length must be non-negative"
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
logger.info("device: {}".format(device))
# Load a pre-processed dataset
# You can also build the corpus yourself using TransfoXLCorpus methods
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset
# The pre-processed corpus is a convertion (using the conversion script )
corpus = TransfoXLCorpus.from_pretrained(args.model_name)
va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len)
# Load a pre-trained model
model = TransfoXLLMHeadModel.from_pretrained(args.model_name)
model.to(device)
logger.info(
"Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}".format(
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len
)
)
model.reset_memory_length(args.mem_len)
if args.clamp_len > 0:
model.clamp_len = args.clamp_len
if args.same_length:
model.same_length = True
###############################################################################
# Evaluation code
###############################################################################
def evaluate(eval_iter):
# Turn on evaluation mode which disables dropout.
model.eval()
total_len, total_loss = 0, 0.0
start_time = time.time()
with torch.no_grad():
mems = None
for idx, (data, target, seq_len) in enumerate(eval_iter):
ret = model(data, lm_labels=target, mems=mems)
loss, _, mems = ret
loss = loss.mean()
total_loss += seq_len * loss.item()
total_len += seq_len
total_time = time.time() - start_time
logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1)))
return total_loss / total_len
# Run on test data.
if args.split == "all":
test_loss = evaluate(te_iter)
valid_loss = evaluate(va_iter)
elif args.split == "valid":
valid_loss = evaluate(va_iter)
test_loss = None
elif args.split == "test":
test_loss = evaluate(te_iter)
valid_loss = None
def format_log(loss, split):
log_str = "| {0} loss {1:5.2f} | {0} ppl {2:9.3f} ".format(split, loss, math.exp(loss))
return log_str
log_str = ""
if valid_loss is not None:
log_str += format_log(valid_loss, "valid")
if test_loss is not None:
log_str += format_log(test_loss, "test")
logger.info("=" * 100)
logger.info(log_str)
logger.info("=" * 100)
if __name__ == "__main__":
main()
|