File size: 7,498 Bytes
a0db2f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections
import os
import re

from transformers.utils import direct_transformers_import


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
TRANSFORMERS_PATH = "src/transformers"
PATH_TO_DOCS = "docs/source/en"
REPO_PATH = "."


def _find_text_in_file(filename, start_prompt, end_prompt):
    """
    Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty
    lines.
    """
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()
    # Find the start prompt.
    start_index = 0
    while not lines[start_index].startswith(start_prompt):
        start_index += 1
    start_index += 1

    end_index = start_index
    while not lines[end_index].startswith(end_prompt):
        end_index += 1
    end_index -= 1

    while len(lines[start_index]) <= 1:
        start_index += 1
    while len(lines[end_index]) <= 1:
        end_index -= 1
    end_index += 1
    return "".join(lines[start_index:end_index]), start_index, end_index, lines


# Add here suffixes that are used to identify models, separated by |
ALLOWED_MODEL_SUFFIXES = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")


# This is to make sure the transformers module imported is the one in the repo.
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)


# Thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
def camel_case_split(identifier):
    "Split a camelcased `identifier` into words."
    matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
    return [m.group(0) for m in matches]


def _center_text(text, width):
    text_length = 2 if text == "✅" or text == "❌" else len(text)
    left_indent = (width - text_length) // 2
    right_indent = width - text_length - left_indent
    return " " * left_indent + text + " " * right_indent


def get_model_table_from_auto_modules():
    """Generates an up-to-date model table from the content of the auto modules."""
    # Dictionary model names to config.
    config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
    model_name_to_config = {
        name: config_maping_names[code]
        for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
        if code in config_maping_names
    }
    model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()}

    # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
    slow_tokenizers = collections.defaultdict(bool)
    fast_tokenizers = collections.defaultdict(bool)
    pt_models = collections.defaultdict(bool)
    tf_models = collections.defaultdict(bool)
    flax_models = collections.defaultdict(bool)

    # Let's lookup through all transformers object (once).
    for attr_name in dir(transformers_module):
        lookup_dict = None
        if attr_name.endswith("Tokenizer"):
            lookup_dict = slow_tokenizers
            attr_name = attr_name[:-9]
        elif attr_name.endswith("TokenizerFast"):
            lookup_dict = fast_tokenizers
            attr_name = attr_name[:-13]
        elif _re_tf_models.match(attr_name) is not None:
            lookup_dict = tf_models
            attr_name = _re_tf_models.match(attr_name).groups()[0]
        elif _re_flax_models.match(attr_name) is not None:
            lookup_dict = flax_models
            attr_name = _re_flax_models.match(attr_name).groups()[0]
        elif _re_pt_models.match(attr_name) is not None:
            lookup_dict = pt_models
            attr_name = _re_pt_models.match(attr_name).groups()[0]

        if lookup_dict is not None:
            while len(attr_name) > 0:
                if attr_name in model_name_to_prefix.values():
                    lookup_dict[attr_name] = True
                    break
                # Try again after removing the last word in the name
                attr_name = "".join(camel_case_split(attr_name)[:-1])

    # Let's build that table!
    model_names = list(model_name_to_config.keys())
    model_names.sort(key=str.lower)
    columns = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
    # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
    widths = [len(c) + 2 for c in columns]
    widths[0] = max([len(name) for name in model_names]) + 2

    # Build the table per se
    table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n"
    # Use ":-----:" format to center-aligned table cell texts
    table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n"

    check = {True: "✅", False: "❌"}
    for name in model_names:
        prefix = model_name_to_prefix[name]
        line = [
            name,
            check[slow_tokenizers[prefix]],
            check[fast_tokenizers[prefix]],
            check[pt_models[prefix]],
            check[tf_models[prefix]],
            check[flax_models[prefix]],
        ]
        table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n"
    return table


def check_model_table(overwrite=False):
    """Check the model table in the index.rst is consistent with the state of the lib and maybe `overwrite`."""
    current_table, start_index, end_index, lines = _find_text_in_file(
        filename=os.path.join(PATH_TO_DOCS, "index.md"),
        start_prompt="<!--This table is updated automatically from the auto modules",
        end_prompt="<!-- End table-->",
    )
    new_table = get_model_table_from_auto_modules()

    if current_table != new_table:
        if overwrite:
            with open(os.path.join(PATH_TO_DOCS, "index.md"), "w", encoding="utf-8", newline="\n") as f:
                f.writelines(lines[:start_index] + [new_table] + lines[end_index:])
        else:
            raise ValueError(
                "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this."
            )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
    args = parser.parse_args()

    check_model_table(args.fix_and_overwrite)