File size: 7,692 Bytes
a0db2f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

print('Loading Dependancies..')
import os
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')

from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2ForCTCWithAdapterSwitching
from datasets import load_dataset, load_metric, Audio
from datasets import Dataset
from transformers import  AutoProcessor, TrainingArguments, Trainer
import pandas as pd
from evaluate import load
from dataclasses import dataclass, field  
from typing import Any, Dict, List, Optional, Union
import argparse
import numpy as np
import torch
from safetensors.torch import load_file
import random

torch.manual_seed(69)
np.random.seed(69)
random.seed(69)

import jieba
import editdistance
from itertools import chain
from jiwer import wer, cer
from evaluate import load
import time

def tokenize_for_mer(text):
    tokens = list(filter(lambda tok: len(tok.strip()) > 0, jieba.lcut(text)))
    tokens = [[tok] if tok.isascii() else list(tok) for tok in tokens]
    return list(chain(*tokens))

def tokenize_for_cer(text):
    tokens = list(filter(lambda tok: len(tok.strip()) > 0, list(text)))
    return tokens

def compute_metrics(pred):
    pred_logits = pred.predictions
    pred_ids = np.argmax(pred_logits, axis=-1)
    pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id

    pred_strs = processor.batch_decode(pred_ids)

    # we do not want to group tokens when computing the metrics
    label_strs = processor.batch_decode(pred.label_ids, group_tokens=False)
    wer_eval = wer_metric.compute(predictions=pred_strs, references=label_strs)
    cer_eval = cer_metric.compute(predictions=pred_strs, references=label_strs)

    mixed_distance, mixed_tokens = 0, 0
    char_distance, char_tokens = 0, 0
    for pred_str, label_str in zip(pred_strs, label_strs):
        # Calculate 
        m_pred = tokenize_for_mer(pred_str)
        m_ref = tokenize_for_mer(label_str)
        mixed_distance += editdistance.distance(m_pred, m_ref)
        mixed_tokens += len(m_ref)

        c_pred = tokenize_for_cer(pred_str)
        c_ref = tokenize_for_cer(label_str)
        char_distance += editdistance.distance(c_pred, c_ref)
        char_tokens += len(c_ref)
    
    mer = mixed_distance / mixed_tokens
    cer = char_distance / char_tokens
    print({"mer": mer, "cer": cer, "wer_eval": wer_eval, "cer_eval" : cer_eval})
    return {"mer": mer, "cer": cer, "wer_eval": wer_eval, "cer_eval" : cer_eval}

@dataclass
class DataCollatorCTCWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        processor (:class:`~transformers.Wav2Vec2Processor`)
            The processor used for proccessing the data.
        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
    """

    processor: AutoProcessor
    padding: Union[bool, str] = True

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lenghts and need
        # different padding methods
        input_features = [{"input_values": feature["input_values"]} for feature in features]
        label_features = [{"input_ids": feature["labels"]} for feature in features]

        batch = self.processor.pad(
            input_features,
            padding=self.padding,
            return_tensors="pt",
        )

        labels_batch = self.processor.pad(
            labels=label_features,
            padding=self.padding,
            return_tensors="pt",
        )

        # replace padding with -100 to ignore loss correctly
        labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

        batch["labels"] = labels

        return batch

def prepare_dataset(batch):
    audio = batch["audio"]

    # batched output is "un-batched"
    batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
    batch["input_length"] = len(batch["input_values"])

    batch["labels"] = processor(text=batch["transcripts"]).input_ids
    return batch


def main():
    global wer_metric
    global cer_metric 

    wer_metric = load('wer')
    cer_metric = load('cer')

    parser = argparse.ArgumentParser()
    parser.add_argument('--test_metadata_csv_path', default=None)
    parser.add_argument('--target_lang_1', required=True)
    parser.add_argument('--target_lang_2', required=True)
    parser.add_argument('--prefix_path', required=True)
    parser.add_argument('--checkpoint_path', required=False)
    parser.add_argument('--outfile_path', required=False)
    parser.add_argument('--batch_size', required=True, type=int)
    args = parser.parse_args()

    df_test = pd.read_csv(args.test_metadata_csv_path, usecols=['file_name', 'transcription'])

    prefix_path = args.prefix_path

    df_test['file_name'] = df_test['file_name'].map(lambda x: prefix_path + x)
    
    test_data = Dataset.from_dict({'audio' : df_test['file_name'], 'transcripts':df_test['transcription']}).cast_column("audio", Audio())
    
    print('Loading Model and Processor..')
    global processor
    processor = AutoProcessor.from_pretrained('facebook/mms-1b-all')
    processor.tokenizer.set_code_switched_target_langs(args.target_lang_1, args.target_lang_2)
    
    test_data = test_data.map(prepare_dataset, remove_columns=['audio', 'transcripts'], num_proc=8)

    data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)

    model = Wav2Vec2ForCTCWithAdapterSwitching.from_pretrained(
        args.checkpoint_path,
        attention_dropout=0.0,
        hidden_dropout=0.0,
        feat_proj_dropout=0.0,
        layerdrop=0.0,
        ctc_loss_reduction="mean",
        pad_token_id=processor.tokenizer.pad_token_id,
        vocab_size=len(processor.tokenizer),
        ignore_mismatched_sizes=True,
        use_safetensors=True
    )

    model.load_adapters_for_code_switching(args.target_lang_1, args.target_lang_2)
    model.load_state_dict(torch.load(args.checkpoint_path + '/pytorch_model.bin'))

    print(model)

            
    print('Setting up training..')
    training_args = TrainingArguments(
        output_dir = 'test/',
        group_by_length=True,
        length_column_name = 'input_length',
        per_device_eval_batch_size = args.batch_size,
        report_to="none",
        eval_accumulation_steps = 10

    )


    trainer = Trainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        eval_dataset=test_data,
        tokenizer=processor,
        compute_metrics = compute_metrics
    )

    print('Staring evaluation..')
    
    results = trainer.predict(test_data)

    ids = torch.argmax(torch.tensor(results[0]), dim=-1)
    transcription = processor.batch_decode(ids)
    df = df_test.copy()
    df['mms_model_transcription'] = transcription
    df.to_csv(args.outfile_path)
    
if __name__ == '__main__':

    main()