metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: bags_results
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
bags_results
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0002
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0485 | 0.23 | 100 | 0.0119 | 0.9974 |
0.0029 | 0.45 | 200 | 0.0105 | 0.9983 |
0.0029 | 0.68 | 300 | 0.0080 | 0.9974 |
0.0331 | 0.91 | 400 | 0.0014 | 1.0 |
0.0019 | 1.13 | 500 | 0.0105 | 0.9974 |
0.0008 | 1.36 | 600 | 0.0058 | 0.9991 |
0.0083 | 1.59 | 700 | 0.0133 | 0.9957 |
0.0009 | 1.81 | 800 | 0.0028 | 0.9991 |
0.0005 | 2.04 | 900 | 0.0030 | 0.9991 |
0.0005 | 2.27 | 1000 | 0.0016 | 0.9991 |
0.0024 | 2.49 | 1100 | 0.0004 | 1.0 |
0.0003 | 2.72 | 1200 | 0.0004 | 1.0 |
0.0003 | 2.95 | 1300 | 0.0016 | 0.9991 |
0.0003 | 3.17 | 1400 | 0.0009 | 0.9991 |
0.0003 | 3.4 | 1500 | 0.0003 | 1.0 |
0.0002 | 3.63 | 1600 | 0.0002 | 1.0 |
0.0002 | 3.85 | 1700 | 0.0002 | 1.0 |
0.0002 | 4.08 | 1800 | 0.0002 | 1.0 |
0.0002 | 4.31 | 1900 | 0.0002 | 1.0 |
0.0002 | 4.54 | 2000 | 0.0002 | 1.0 |
0.0002 | 4.76 | 2100 | 0.0002 | 1.0 |
0.0002 | 4.99 | 2200 | 0.0002 | 1.0 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.2