File size: 1,721 Bytes
13c53fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
base_model: digitalepidemiologylab/covid-twitter-bert-v2
tags:
- generated_from_trainer
metrics:
- f1
- recall
- precision
model-index:
- name: covid_bert-e3-b16-v2-w0.01-dev1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# covid_bert-e3-b16-v2-w0.01-dev1
This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9608
- F1: 0.7913
- Recall: 0.7913
- Precision: 0.7913
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:|
| 0.8059 | 1.0 | 753 | 0.6912 | 0.7558 | 0.7558 | 0.7558 |
| 0.5563 | 2.0 | 1506 | 0.7618 | 0.7804 | 0.7804 | 0.7804 |
| 0.3678 | 3.0 | 2259 | 0.9608 | 0.7913 | 0.7913 | 0.7913 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|