File size: 15,862 Bytes
c7828f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from typing import Dict, List, Any
from scipy.special import softmax
import numpy as np
import weakref
from utils import (
    clean_str,
    clean_str_nopunct,
    MultiHeadModel,
    BertInputBuilder,
    get_num_words,
    preprocess_transcript_for_eliciting,
    preprocess_raw_files,
    post_processing_output_json,
    compute_student_engagement,
    compute_talk_time,
    gpt4_filtering_selection
)
import torch
from transformers import BertTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer

UPTAKE_MODEL='ddemszky/uptake-model'
QUESTION_MODEL ='ddemszky/question-detection'
ELICITING_MODEL = 'YaHi/teacher_electra_small'

class UptakeUtterance:
    def __init__(self, speaker, text, uid=None,
                 transcript=None, starttime=None, endtime=None, **kwargs):
        self.speaker = speaker
        self.text = text
        self.prev_utt = None
        self.uid = uid
        self.starttime = starttime
        self.endtime = endtime
        self.transcript = weakref.ref(transcript) if transcript else None
        self.props = kwargs

        self.uptake = None
        self.question = None

    def get_clean_text(self, remove_punct=False):
        if remove_punct:
            return clean_str_nopunct(self.text)
        return clean_str(self.text)

    def get_num_words(self):
        if self.text is None:
            return 0
        return get_num_words(self.text)

    def to_dict(self):
        return {
            'speaker': self.speaker,
            'text': self.text,
            'prev_utt': self.prev_utt,
            'uid': self.uid,
            'starttime': self.starttime,
            'endtime': self.endtime,
            'uptake': self.uptake,
            'question':  self.question,
            **self.props
        }

    def __repr__(self):
        return f"Utterance(speaker='{self.speaker}'," \
               f"text='{self.text}', prev_utt='{self.prev_utt}', uid={self.uid}," \
               f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"

class UptakeTranscript:
    def __init__(self, **kwargs):
        self.utterances = []
        self.params = kwargs

    def add_utterance(self, utterance):
        utterance.transcript = weakref.ref(self)
        self.utterances.append(utterance)

    def get_idx(self, idx):
        if idx >= len(self.utterances):
            return None
        return self.utterances[idx]

    def get_uid(self, uid):
        for utt in self.utterances:
            if utt.uid == uid:
                return utt
        return None

    def length(self):
        return len(self.utterances)

    def to_dict(self):
        return {
            'utterances': [utterance.to_dict() for utterance in self.utterances],
            **self.params
        }

    def __repr__(self):
        return f"Transcript(utterances={self.utterances}, custom_params={self.params})"
    
class ElicitingUtterance:
    def __init__(self, speaker, text, starttime, endtime, uid=None, transcript=None, prev_utt=None):
        self.speaker = speaker
        self.text = clean_str_nopunct(text)
        self.uid = uid
        self.transcript = transcript if transcript else None
        self.prev_utt = prev_utt
        self.eliciting = None
        self.question = None
        self.starttime = starttime
        self.endtime = endtime

    def __setitem__(self, key, value):
        self.__dict__[key] = value

    def get_clean_text(self, remove_punct=False):
        if remove_punct:
            return clean_str_nopunct(self.text)
        return clean_str(self.text)

    def to_dict(self):
        return {
            'speaker': self.speaker,
            'text': self.text,
            'uid': self.uid,
            'prev_utt': self.prev_utt,
            'eliciting': self.eliciting,
            'question': self.question,
            'starttime': self.starttime,
            'endtime': self.endtime,
        }


    def __repr__(self):
        return f"Utterance(speaker='{self.speaker}'," \
               f"text='{self.text}', uid={self.uid}, prev_utt={self.prev_utt}, elicting={self.eliciting}, question={self.question}), starttime={self.starttime}, endtime={self.endtime})"
    
class ElicitingTranscript:
    def __init__(self, utterances: List[ElicitingUtterance], tokenizer=None):
        self.tokenizer = tokenizer
        self.utterances = []
        prev_utt = ""
        prev_utt_teacher = ""
        prev_speaker = None
        for utterance in utterances:
            try:
                if 'student' in utterance["speaker"]:
                    utterance["speaker"] = 'student'
            except:
                continue
            if (prev_speaker == 'tutor') and (utterance["speaker"] == 'student'):
                utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt.text)
            elif (prev_speaker == 'student') and (utterance["speaker"] == 'tutor'):
                utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt.text)
                prev_utt_teacher = utterance.text
            elif (prev_speaker == 'student') and (utterance["speaker"] == 'student'):
                try:
                    utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt_teacher)
                except:
                    print("Error on line 159 of handler.py")
                    print(utterance)
                    # breakpoint()
            else:
                utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt="")
                if utterance.speaker == 'tutor':
                    prev_utt_teacher = utterance.text
            prev_utt = utterance
            prev_speaker = utterance.speaker
            self.utterances.append(utterance)

    def __len__(self):
        return len(self.utterances)

    def __getitem__(self, index):
        output = self.tokenizer([(self.utterances[index].prev_utt, self.utterances[index].text)], truncation=True)
        output["speaker"] = self.utterances[index].speaker
        output["uid"] = self.utterances[index].uid
        output["prev_utt"] = self.utterances[index].prev_utt
        output["text"] = self.utterances[index].text
        return output
    
    def to_dict(self):
        return {
            'utterances': [utterance.to_dict() for utterance in self.utterances]
        }

class QuestionModel:
    def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
        print("Loading models...")
        self.device = device
        self.tokenizer = tokenizer
        self.input_builder = input_builder
        self.max_length = max_length
        self.model = MultiHeadModel.from_pretrained(path, head2size={"is_question": 2})
        self.model.to(self.device)


    def run_inference(self, transcript):
        self.model.eval()
        with torch.no_grad():
            for i, utt in enumerate(transcript.utterances):
                if utt.text is None:
                    utt.question = None
                    continue
                if "?" in utt.text:
                    utt.question = 1
                else:
                    text = utt.get_clean_text(remove_punct=True)
                    instance = self.input_builder.build_inputs([], text,
                                                               max_length=self.max_length,
                                                               input_str=True)
                    output = self.get_prediction(instance)
                    utt.question = softmax(output["is_question_logits"][0].tolist())[1]

    def get_prediction(self, instance):
        instance["attention_mask"] = [[1] * len(instance["input_ids"])]
        for key in ["input_ids", "token_type_ids", "attention_mask"]:
            instance[key] = torch.tensor(instance[key]).unsqueeze(0)  # Batch size = 1
            instance[key].to(self.device)

        output = self.model(input_ids=instance["input_ids"].to(self.device),
                            attention_mask=instance["attention_mask"].to(self.device),
                            token_type_ids=instance["token_type_ids"].to(self.device),
                            return_pooler_output=False)
        return output

class UptakeModel:
    def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
        print("Loading models...")
        self.device = device
        self.tokenizer = tokenizer
        self.input_builder = input_builder
        self.max_length = max_length
        self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
        self.model.to(self.device)

    def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
        self.model.eval()
        prev_num_words = 0
        prev_utt = None
        with torch.no_grad():
            for i, utt in enumerate(transcript.utterances):
                if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
                    textA = prev_utt.get_clean_text(remove_punct=False)
                    textB = utt.get_clean_text(remove_punct=False)
                    instance = self.input_builder.build_inputs([textA], textB,
                                                               max_length=self.max_length,
                                                               input_str=True)
                    output = self.get_prediction(instance)

                    utt.uptake = softmax(output["nsp_logits"][0].tolist())[1]
                    utt.prev_utt = prev_utt.text
                prev_num_words = utt.get_num_words()
                prev_utt = utt

    def get_prediction(self, instance):
        instance["attention_mask"] = [[1] * len(instance["input_ids"])]
        for key in ["input_ids", "token_type_ids", "attention_mask"]:
            instance[key] = torch.tensor(instance[key]).unsqueeze(0)  # Batch size = 1
            instance[key].to(self.device)

        output = self.model(input_ids=instance["input_ids"].to(self.device),
                            attention_mask=instance["attention_mask"].to(self.device),
                            token_type_ids=instance["token_type_ids"].to(self.device),
                            return_pooler_output=False)
        return output
    
class ElicitingModel:
    def __init__(self, device, tokenizer, path=ELICITING_MODEL):
        print("Loading teacher models...")
        self.device = device
        self.tokenizer = tokenizer
        self.model = AutoModelForSequenceClassification.from_pretrained(path).to(self.device)

    def run_inference(self, dataset):
        current_batch = 0
        batch_size = 64

        def generator():
            while current_batch < len(dataset):
                yield
        
        for _ in generator():
            # check if the remaining samples are less than the batch size
            if len(dataset) - current_batch < batch_size:
                batch_size = len(dataset) - current_batch

            to_pad = [{"input_ids": example["input_ids"][0], "attention_mask": example["attention_mask"][0]} for example in dataset]
            to_pad = to_pad[current_batch:current_batch + batch_size]
            batch = self.tokenizer.pad(
                to_pad,
                padding=True,
                max_length=None,
                pad_to_multiple_of=None,
                return_tensors="pt",
            )
            inputs = batch["input_ids"].to(self.device)
            attention_mask = batch["attention_mask"].to(self.device)
            with torch.no_grad():
                outputs = self.model(inputs, attention_mask=attention_mask)
            predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
        
            for i, prediction in enumerate(predictions):
                if dataset.utterances[current_batch + i].speaker == 'tutor':
                    dataset.utterances[current_batch + i]["eliciting"] = prediction
            current_batch += batch_size
    

class EndpointHandler():
    def __init__(self, path="."):
        print("Loading models...")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
        self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)
        self.uptake_model = UptakeModel(self.device, self.tokenizer, self.input_builder)
        self.question_model = QuestionModel(self.device, self.tokenizer, self.input_builder)
        self.eliciting_tokenizer = AutoTokenizer.from_pretrained(ELICITING_MODEL)
        self.eliciting_model = ElicitingModel(self.device, self.tokenizer, path=ELICITING_MODEL)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: `list`):
            List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
            `text` and `uid`and can include list of custom properties
            parameters (:obj: `dict`)
       Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """

        # get inputs
        utterances = data.pop("inputs", data)
        params = data.pop("parameters", None) #TODO: make sure that it includes everything required

        print(params["session_uuid"])

        # pre-processing
        utterances = preprocess_raw_files(utterances, params)

        # compute student engagement and talk time metrics
        num_students_engaged, num_students_engaged_talk_only = compute_student_engagement(utterances)
        tutor_talk_time = compute_talk_time(utterances)

        #TODO: make sure there is some routing going on here based on what session we are at
        if params["session_type"] == "eliciting":
            # pre-processing for eliciting
            utterances_elicting = preprocess_transcript_for_eliciting(utterances)
            eliciting_transcript = ElicitingTranscript(utterances_elicting, tokenizer=self.tokenizer)
            self.eliciting_model.run_inference(eliciting_transcript)
            
            # Question
            self.question_model.run_inference(eliciting_transcript)

            transcript_output = eliciting_transcript
        else:
            uptake_transcript = UptakeTranscript(filename=params.pop("filename", None))
            for utt in utterances:
                uptake_transcript.add_utterance(UptakeUtterance(**utt))

            # Uptake
            self.uptake_model.run_inference(uptake_transcript, min_prev_words=params['uptake_min_num_words'],
                                    uptake_speaker=params.pop("uptake_speaker", None))

            # Question
            self.question_model.run_inference(uptake_transcript)
            transcript_output = uptake_transcript

        # post-processing
        model_outputs = post_processing_output_json(transcript_output.to_dict(), params["session_uuid"], params["session_type"])
        
        final_output = {}
        final_output["metrics"] = {"num_students_engaged": num_students_engaged, 
                                   "num_students_engaged_talk_only": num_students_engaged_talk_only, 
                                   "tutor_talk_time": tutor_talk_time}
        
        if len(model_outputs) > 0:
            model_outputs = gpt4_filtering_selection(model_outputs, params["session_type"], params["focus_concept"])
        
        final_output["model_outputs"] = model_outputs 
        final_output["event_id"] = params["event_id"]

        import requests
        webhooks_url = 'https://schoolhouse.world/api/webhooks/stanford-ai-feedback-highlights'
        response = requests.post(webhooks_url, json=final_output)

        print("Post request sent, here is the response: ", response) 


        return final_output