File size: 15,862 Bytes
c7828f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
from typing import Dict, List, Any
from scipy.special import softmax
import numpy as np
import weakref
from utils import (
clean_str,
clean_str_nopunct,
MultiHeadModel,
BertInputBuilder,
get_num_words,
preprocess_transcript_for_eliciting,
preprocess_raw_files,
post_processing_output_json,
compute_student_engagement,
compute_talk_time,
gpt4_filtering_selection
)
import torch
from transformers import BertTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer
UPTAKE_MODEL='ddemszky/uptake-model'
QUESTION_MODEL ='ddemszky/question-detection'
ELICITING_MODEL = 'YaHi/teacher_electra_small'
class UptakeUtterance:
def __init__(self, speaker, text, uid=None,
transcript=None, starttime=None, endtime=None, **kwargs):
self.speaker = speaker
self.text = text
self.prev_utt = None
self.uid = uid
self.starttime = starttime
self.endtime = endtime
self.transcript = weakref.ref(transcript) if transcript else None
self.props = kwargs
self.uptake = None
self.question = None
def get_clean_text(self, remove_punct=False):
if remove_punct:
return clean_str_nopunct(self.text)
return clean_str(self.text)
def get_num_words(self):
if self.text is None:
return 0
return get_num_words(self.text)
def to_dict(self):
return {
'speaker': self.speaker,
'text': self.text,
'prev_utt': self.prev_utt,
'uid': self.uid,
'starttime': self.starttime,
'endtime': self.endtime,
'uptake': self.uptake,
'question': self.question,
**self.props
}
def __repr__(self):
return f"Utterance(speaker='{self.speaker}'," \
f"text='{self.text}', prev_utt='{self.prev_utt}', uid={self.uid}," \
f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"
class UptakeTranscript:
def __init__(self, **kwargs):
self.utterances = []
self.params = kwargs
def add_utterance(self, utterance):
utterance.transcript = weakref.ref(self)
self.utterances.append(utterance)
def get_idx(self, idx):
if idx >= len(self.utterances):
return None
return self.utterances[idx]
def get_uid(self, uid):
for utt in self.utterances:
if utt.uid == uid:
return utt
return None
def length(self):
return len(self.utterances)
def to_dict(self):
return {
'utterances': [utterance.to_dict() for utterance in self.utterances],
**self.params
}
def __repr__(self):
return f"Transcript(utterances={self.utterances}, custom_params={self.params})"
class ElicitingUtterance:
def __init__(self, speaker, text, starttime, endtime, uid=None, transcript=None, prev_utt=None):
self.speaker = speaker
self.text = clean_str_nopunct(text)
self.uid = uid
self.transcript = transcript if transcript else None
self.prev_utt = prev_utt
self.eliciting = None
self.question = None
self.starttime = starttime
self.endtime = endtime
def __setitem__(self, key, value):
self.__dict__[key] = value
def get_clean_text(self, remove_punct=False):
if remove_punct:
return clean_str_nopunct(self.text)
return clean_str(self.text)
def to_dict(self):
return {
'speaker': self.speaker,
'text': self.text,
'uid': self.uid,
'prev_utt': self.prev_utt,
'eliciting': self.eliciting,
'question': self.question,
'starttime': self.starttime,
'endtime': self.endtime,
}
def __repr__(self):
return f"Utterance(speaker='{self.speaker}'," \
f"text='{self.text}', uid={self.uid}, prev_utt={self.prev_utt}, elicting={self.eliciting}, question={self.question}), starttime={self.starttime}, endtime={self.endtime})"
class ElicitingTranscript:
def __init__(self, utterances: List[ElicitingUtterance], tokenizer=None):
self.tokenizer = tokenizer
self.utterances = []
prev_utt = ""
prev_utt_teacher = ""
prev_speaker = None
for utterance in utterances:
try:
if 'student' in utterance["speaker"]:
utterance["speaker"] = 'student'
except:
continue
if (prev_speaker == 'tutor') and (utterance["speaker"] == 'student'):
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt.text)
elif (prev_speaker == 'student') and (utterance["speaker"] == 'tutor'):
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt.text)
prev_utt_teacher = utterance.text
elif (prev_speaker == 'student') and (utterance["speaker"] == 'student'):
try:
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt=prev_utt_teacher)
except:
print("Error on line 159 of handler.py")
print(utterance)
# breakpoint()
else:
utterance = ElicitingUtterance(**utterance, transcript=self, prev_utt="")
if utterance.speaker == 'tutor':
prev_utt_teacher = utterance.text
prev_utt = utterance
prev_speaker = utterance.speaker
self.utterances.append(utterance)
def __len__(self):
return len(self.utterances)
def __getitem__(self, index):
output = self.tokenizer([(self.utterances[index].prev_utt, self.utterances[index].text)], truncation=True)
output["speaker"] = self.utterances[index].speaker
output["uid"] = self.utterances[index].uid
output["prev_utt"] = self.utterances[index].prev_utt
output["text"] = self.utterances[index].text
return output
def to_dict(self):
return {
'utterances': [utterance.to_dict() for utterance in self.utterances]
}
class QuestionModel:
def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = MultiHeadModel.from_pretrained(path, head2size={"is_question": 2})
self.model.to(self.device)
def run_inference(self, transcript):
self.model.eval()
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if utt.text is None:
utt.question = None
continue
if "?" in utt.text:
utt.question = 1
else:
text = utt.get_clean_text(remove_punct=True)
instance = self.input_builder.build_inputs([], text,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
utt.question = softmax(output["is_question_logits"][0].tolist())[1]
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"].to(self.device),
attention_mask=instance["attention_mask"].to(self.device),
token_type_ids=instance["token_type_ids"].to(self.device),
return_pooler_output=False)
return output
class UptakeModel:
def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
self.model.to(self.device)
def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
self.model.eval()
prev_num_words = 0
prev_utt = None
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
textA = prev_utt.get_clean_text(remove_punct=False)
textB = utt.get_clean_text(remove_punct=False)
instance = self.input_builder.build_inputs([textA], textB,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
utt.uptake = softmax(output["nsp_logits"][0].tolist())[1]
utt.prev_utt = prev_utt.text
prev_num_words = utt.get_num_words()
prev_utt = utt
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"].to(self.device),
attention_mask=instance["attention_mask"].to(self.device),
token_type_ids=instance["token_type_ids"].to(self.device),
return_pooler_output=False)
return output
class ElicitingModel:
def __init__(self, device, tokenizer, path=ELICITING_MODEL):
print("Loading teacher models...")
self.device = device
self.tokenizer = tokenizer
self.model = AutoModelForSequenceClassification.from_pretrained(path).to(self.device)
def run_inference(self, dataset):
current_batch = 0
batch_size = 64
def generator():
while current_batch < len(dataset):
yield
for _ in generator():
# check if the remaining samples are less than the batch size
if len(dataset) - current_batch < batch_size:
batch_size = len(dataset) - current_batch
to_pad = [{"input_ids": example["input_ids"][0], "attention_mask": example["attention_mask"][0]} for example in dataset]
to_pad = to_pad[current_batch:current_batch + batch_size]
batch = self.tokenizer.pad(
to_pad,
padding=True,
max_length=None,
pad_to_multiple_of=None,
return_tensors="pt",
)
inputs = batch["input_ids"].to(self.device)
attention_mask = batch["attention_mask"].to(self.device)
with torch.no_grad():
outputs = self.model(inputs, attention_mask=attention_mask)
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
for i, prediction in enumerate(predictions):
if dataset.utterances[current_batch + i].speaker == 'tutor':
dataset.utterances[current_batch + i]["eliciting"] = prediction
current_batch += batch_size
class EndpointHandler():
def __init__(self, path="."):
print("Loading models...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)
self.uptake_model = UptakeModel(self.device, self.tokenizer, self.input_builder)
self.question_model = QuestionModel(self.device, self.tokenizer, self.input_builder)
self.eliciting_tokenizer = AutoTokenizer.from_pretrained(ELICITING_MODEL)
self.eliciting_model = ElicitingModel(self.device, self.tokenizer, path=ELICITING_MODEL)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `list`):
List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
`text` and `uid`and can include list of custom properties
parameters (:obj: `dict`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# get inputs
utterances = data.pop("inputs", data)
params = data.pop("parameters", None) #TODO: make sure that it includes everything required
print(params["session_uuid"])
# pre-processing
utterances = preprocess_raw_files(utterances, params)
# compute student engagement and talk time metrics
num_students_engaged, num_students_engaged_talk_only = compute_student_engagement(utterances)
tutor_talk_time = compute_talk_time(utterances)
#TODO: make sure there is some routing going on here based on what session we are at
if params["session_type"] == "eliciting":
# pre-processing for eliciting
utterances_elicting = preprocess_transcript_for_eliciting(utterances)
eliciting_transcript = ElicitingTranscript(utterances_elicting, tokenizer=self.tokenizer)
self.eliciting_model.run_inference(eliciting_transcript)
# Question
self.question_model.run_inference(eliciting_transcript)
transcript_output = eliciting_transcript
else:
uptake_transcript = UptakeTranscript(filename=params.pop("filename", None))
for utt in utterances:
uptake_transcript.add_utterance(UptakeUtterance(**utt))
# Uptake
self.uptake_model.run_inference(uptake_transcript, min_prev_words=params['uptake_min_num_words'],
uptake_speaker=params.pop("uptake_speaker", None))
# Question
self.question_model.run_inference(uptake_transcript)
transcript_output = uptake_transcript
# post-processing
model_outputs = post_processing_output_json(transcript_output.to_dict(), params["session_uuid"], params["session_type"])
final_output = {}
final_output["metrics"] = {"num_students_engaged": num_students_engaged,
"num_students_engaged_talk_only": num_students_engaged_talk_only,
"tutor_talk_time": tutor_talk_time}
if len(model_outputs) > 0:
model_outputs = gpt4_filtering_selection(model_outputs, params["session_type"], params["focus_concept"])
final_output["model_outputs"] = model_outputs
final_output["event_id"] = params["event_id"]
import requests
webhooks_url = 'https://schoolhouse.world/api/webhooks/stanford-ai-feedback-highlights'
response = requests.post(webhooks_url, json=final_output)
print("Post request sent, here is the response: ", response)
return final_output |