File size: 11,678 Bytes
5f1c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
from typing import Any, Dict, List, Optional, Union
import os
import json
import time
import numpy as np
from transformers import Trainer
from transformers import Wav2Vec2ForCTC
from transformers import TrainingArguments
from transformers import Wav2Vec2Processor
from transformers import Wav2Vec2CTCTokenizer
from transformers import Wav2Vec2FeatureExtractor
from datasets import load_dataset, load_metric, Audio, concatenate_datasets, load_from_disk
from aim import Run
from aim.hugging_face import AimCallback
import fire
from aspram.collator import DataCollatorCTCWithPadding
from aspram.utils import clean_characters, extract_all_chars, prepare_dataset
def load_data(dataset_name: str, *, split: str):
dataset_name = dataset_name.replace(' ', '')
if '+' in dataset_name:
return concatenate_datasets([
load_data(name, split=split)
for name in dataset_name.split('+')
])
if '*' in dataset_name:
a, _, b = dataset_name.partition('*')
if a.isnumeric():
num_repeats = int(a)
dataset_name = b
else:
num_repeats = int(b)
dataset_name = a
dataset = load_data(dataset_name, split=split)
return concatenate_datasets([
dataset
for _ in range(num_repeats)
])
if 'teacher' in dataset_name:
dataset = load_from_disk(
dataset_name,
).filter(
lambda sample: len(sample['audio']['array']) < 250_000
)
elif 'common_voice' in dataset_name:
dataset = load_dataset(
dataset_name,
"hy-AM",
split="train+validation+other" if split == 'train' else split,
use_auth_token=True,
)
else:
dataset = load_dataset(
dataset_name,
'hy_am',
split='train',
).map(
lambda sample: dict(sentence=sample['transcription'])
).filter(
lambda sample: sample['num_samples'] < 250_000
)
non_wanted_column_name = set(dataset.column_names) - set(['audio', 'path', 'sentence', 'client_id'])
dataset = dataset.map(remove_columns=non_wanted_column_name).cast_column("audio", Audio(sampling_rate=16_000))
return dataset
def exec(
*,
batch_size: int,
lr: float,
warmup_steps: int = 2000,
grad_acc: int = 1,
group_by_length: bool = True,
fp16: bool = True,
bf16: bool = False,
pretrained_model: str = "facebook/wav2vec2-xls-r-2b",
dataset: str = "mozilla-foundation/common_voice_8_0",
num_train_epochs: int = 1200,
blacklist_enabled: bool = True,
seed: int = 42,
# random augment
apply_gaussian_noise_with_p: float = 0,
apply_gain_with_p: float = 0,
apply_pitch_shift_with_p: float = 0,
apply_time_stretch_with_p: float = 0,
# spec augment
mask_time_prob: float = 0.05, # value that is used in the previous models
mask_time_length: int = 10,
mask_time_min_masks: int = 2,
mask_feature_prob: float = 0,
mask_feature_length: int = 10,
mask_feature_min_masks: int = 0,
layerdrop: float = 0,
activation_dropout: float = 0.1,
lower: bool = False,
only_mesropatar: bool = False,
gradient_checkpointing: bool = False,
resume_from_hash: str = None,
):
if bf16:
fp16 = False
fire_args = locals()
run = Run(resume_from_hash, log_system_params=(not resume_from_hash))
if not resume_from_hash:
timestr = time.strftime("%Y%m%d-%H%M%S")
repo_name = os.path.join('models', timestr)
for key, value in fire_args.items():
run['hparams', key] = value
run['fire', key] = value
else:
repo_name = run['hparams', 'output_dir']
run_hash = run.hash
run = None
train_dataset = load_data(dataset, split="train")
blacklist_client_ids = set()
blacklist_sentences = set()
if blacklist_enabled:
blacklist_client_ids = {
"93fa435db2b9e077af647c9f846d8b6031bcb1f6cd731e894a835e70a0ab4aec1faffce01c882bdcdcb854b98b601c83a1c412bae8e5ee411556f0e2f88c1c5c",
"f0aba38a8ab8705a40d05d96829ded5738a7eec7a9a182394c2ed288fc1c64553abcb1e0c4c966ffab9e8b76c27616b9f0503f92c42fe11249af36c50d3de5ef",
"a528aa436a34dce3b4ddc198c105ebb904967acdd04157bd1b0e0b2ffadd99b36a6cc5fe76f23c3dd2263d1507bec6038c41cb521ac8ee34126133e559df9e75",
"b83375c41b8ef9ab1b64491b624302b1541b0ba8496ed4e5cb4a751766d7a2cf7430e49e7118eaac98f5ae478d8cdd2b59d18526632297185bbc2e10e2126b18",
"330411ed21c5d9cda96180ac633b4dd10f5b6e50968e83a64f0016c9e15f22445fa8f396ef92b70ff03fc78e36b35b1693af60431b61b50b706aa58a00f80641",
}
# valid_dataset = load_data(dataset, split="test")
valid_dataset = load_data("yerevann/common_voice_9_0", split="test")
# train_client_ids = set(train_dataset['client_id']) - { None }
valid_client_ids = set(valid_dataset['client_id']) - { None }
blacklist_sentences = set(valid_dataset['sentence'])
blacklist_client_ids |= valid_client_ids
train_dataset = train_dataset.filter(
lambda sample: (
sample.get("client_id") not in blacklist_client_ids
and
sample.get("sentence") not in blacklist_sentences
)
)
# print('\n' * 10 + '================================' + '\n' * 10)
# print(train_client_ids & valid_client_ids)
# print('\n' * 10 + '================================' + '\n' * 10)
# train_dataset = train_dataset.remove_columns(
# [
# "accent",
# "age",
# "client_id",
# "down_votes",
# "gender",
# "locale",
# "segment",
# "up_votes",
# ]
# )
# valid_dataset = valid_dataset.remove_columns(
# [
# "accent",
# "age",
# "client_id",
# "down_votes",
# "gender",
# "locale",
# "segment",
# "up_votes",
# ]
# )
train_dataset = train_dataset.map(clean_characters, fn_kwargs=dict(lower=lower, only_mesropatar=only_mesropatar))
valid_dataset = valid_dataset.map(clean_characters, fn_kwargs=dict(lower=lower, only_mesropatar=only_mesropatar))
if 'models/' in pretrained_model:
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(pretrained_model)
elif not resume_from_hash:
vocab_train = train_dataset.map(
extract_all_chars,
batched=True,
batch_size=-1,
keep_in_memory=True,
remove_columns=train_dataset.column_names,
)
vocab_valid = valid_dataset.map(
extract_all_chars,
batched=True,
batch_size=-1,
keep_in_memory=True,
remove_columns=valid_dataset.column_names,
)
vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_valid["vocab"][0]))
vocab_dict = {v: k for k, v in enumerate(sorted(vocab_list))}
vocab_dict["|"] = vocab_dict[" "]
del vocab_dict[" "]
vocab_dict["[UNK]"] = len(vocab_dict)
vocab_dict["[PAD]"] = len(vocab_dict)
with open("vocab.json", "w") as vocab_file:
json.dump(vocab_dict, vocab_file)
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(
"./", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|"
)
tokenizer.push_to_hub(repo_name) # smth is wrong here
else:
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(repo_name)
feature_extractor = Wav2Vec2FeatureExtractor(
feature_size=1,
sampling_rate=16000,
padding_value=0.0,
do_normalize=True,
return_attention_mask=True,
)
processor = Wav2Vec2Processor(
feature_extractor=feature_extractor,
tokenizer=tokenizer,
)
train_dataset = train_dataset.cast_column(
"audio", Audio(sampling_rate=16_000)
)
valid_dataset = valid_dataset.cast_column(
"audio", Audio(sampling_rate=16_000)
)
train_dataset = train_dataset.map(
prepare_dataset, remove_columns=train_dataset.column_names,
fn_kwargs=dict(processor=processor)
)
valid_dataset = valid_dataset.map(
prepare_dataset, remove_columns=valid_dataset.column_names,
fn_kwargs=dict(processor=processor)
)
data_collator = DataCollatorCTCWithPadding(
processor=processor,
padding=True,
sample_rate=16_000,
apply_gaussian_noise_with_p=apply_gaussian_noise_with_p,
apply_gain_with_p=apply_gain_with_p,
apply_pitch_shift_with_p=apply_pitch_shift_with_p,
apply_time_stretch_with_p=apply_time_stretch_with_p,
)
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer, "cer": cer}
wer_metric = load_metric("wer")
cer_metric = load_metric("cer")
def model_init():
from transformers import Wav2Vec2Config
model = Wav2Vec2ForCTC.from_pretrained(
pretrained_model,
attention_dropout=0.0,
hidden_dropout=0.0,
feat_proj_dropout=0.0,
mask_time_prob=mask_time_prob,
mask_time_length=mask_time_length,
mask_time_min_masks=mask_time_min_masks,
mask_feature_prob=mask_feature_prob,
mask_feature_length=mask_feature_length,
mask_feature_min_masks=mask_feature_min_masks,
layerdrop=layerdrop,
activation_dropout=activation_dropout,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer),
)
model.freeze_feature_extractor()
return model
training_args = TrainingArguments(
output_dir=repo_name,
group_by_length=group_by_length,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=grad_acc,
evaluation_strategy="steps",
num_train_epochs=num_train_epochs,
gradient_checkpointing=gradient_checkpointing if resume_from_hash is None else True,
fp16=fp16,
bf16=bf16,
save_steps=4000,
eval_steps=200,
logging_steps=200,
learning_rate=lr, # TODO
warmup_steps=warmup_steps,
save_total_limit=1,
push_to_hub=True,
metric_for_best_model="eval_wer",
greater_is_better=False,
seed=seed,
)
aim_callback = AimCallback()
aim_callback._run_hash = run_hash
print(train_dataset)
# run = aim_callback.experiment
trainer = Trainer(
model_init=model_init,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
tokenizer=processor.feature_extractor,
callbacks=[aim_callback],
)
trainer.train(resume_from_checkpoint=bool(resume_from_hash))
trainer.push_to_hub()
if __name__ == "__main__":
fire.Fire(exec)
|