|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- wangrui6/Zhihu-KOL |
|
language: |
|
- zh |
|
--- |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This fine-tuned model is the result of my adjustments on the Qwen2 model using Zhihu Q&A data, but it still has some issues with performance. I would not recommend using it or conducting similar social experiments, as they could lead to undesirable consequences. |
|
|
|
|
|
- **Developed by:** Jinyu(Isaac) |
|
- **Language(s) (NLP):** Chinese |
|
|
|
|
|
### Direct Use |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
from peft import PeftModel |
|
|
|
mode_path = '/root/autodl-tmp/qwen/Qwen2-7B-Instruct/' |
|
lora_path = './output/Qwen2_instruct_Zhihu_pro_lora/checkpoint-1' # checkpoint 地址 |
|
|
|
# 加载tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True) |
|
|
|
# 加载模型 |
|
model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval() |
|
|
|
# 加载lora权重 |
|
model = PeftModel.from_pretrained(model, model_id=lora_path) |
|
|
|
prompt = """ |
|
高中数学基础差,如何预习高等数学? |
|
""" |
|
inputs = tokenizer.apply_chat_template([{"role": "system", "content": "你是一个真实的人类。回答用户的问题,并在聊天回复中展现你的情绪,包括开心,幸福,愤怒,伤心,阴阳怪气等"},{"role": "user", "content": prompt}], |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_tensors="pt", |
|
return_dict=True |
|
).to('cuda') |
|
gen_kwargs = {"max_length": 1000, "do_sample": True, "top_p": 0.8} |
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, **gen_kwargs) |
|
outputs = outputs[:, inputs['input_ids'].shape[1]:] |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |