File size: 1,622 Bytes
b1a925f 347f8f3 b1a925f 347f8f3 b1a925f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
library_name: transformers.js
pipeline_tag: image-segmentation
---
https://huggingface.co/nvidia/segformer-b4-finetuned-cityscapes-1024-1024 with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
**Example:** Image segmentation with `Xenova/segformer-b4-finetuned-cityscapes-1024-1024`.
```js
import { pipeline } from '@xenova/transformers';
// Create an image segmentation pipeline
const segmenter = await pipeline('image-segmentation', 'Xenova/segformer-b4-finetuned-cityscapes-1024-1024');
// Segment an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cityscapes.png';
const output = await segmenter(url);
console.log(output)
// [
// {
// score: null,
// label: 'road',
// mask: RawImage { ... }
// },
// {
// score: null,
// label: 'sidewalk',
// mask: RawImage { ... }
// },
// ...
// ]
```
You can visualize the outputs with:
```js
for (const l of output) {
l.mask.save(`${l.label}.png`);
}
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |