File size: 2,937 Bytes
0c7bce2 fc7afa5 0c7bce2 a6583d5 0c7bce2 b957f46 514fdd0 b957f46 0c7bce2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
base_model: google/owlvit-base-patch32
library_name: transformers.js
pipeline_tag: zero-shot-object-detection
---
https://huggingface.co/google/owlvit-base-patch32 with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
**Example:** Zero-shot object detection w/ `Xenova/owlvit-base-patch32`.
```js
import { pipeline } from '@xenova/transformers';
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/astronaut.png';
const candidate_labels = ['human face', 'rocket', 'helmet', 'american flag'];
const output = await detector(url, candidate_labels);
// [
// { score: 0.24392342567443848, label: 'human face', box: { xmin: 180, ymin: 67, xmax: 274, ymax: 175 } },
// { score: 0.15129457414150238, label: 'american flag', box: { xmin: 0, ymin: 4, xmax: 106, ymax: 513 } },
// { score: 0.13649864494800568, label: 'helmet', box: { xmin: 277, ymin: 337, xmax: 511, ymax: 511 } },
// { score: 0.10262022167444229, label: 'rocket', box: { xmin: 352, ymin: -1, xmax: 463, ymax: 287 } }
// ]
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/rNLU-bl1_H0HrPgkPMhso.png)
**Example:** Zero-shot object detection w/ `Xenova/owlvit-base-patch32` (additional parameters).
```js
import { pipeline } from '@xenova/transformers';
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/beach.png';
const candidate_labels = ['hat', 'book', 'sunglasses', 'camera'];
const output = await detector(url, candidate_labels, { topk: 4, threshold: 0.05 });
// [
// { score: 0.1606510728597641, label: 'sunglasses', box: { xmin: 347, ymin: 229, xmax: 429, ymax: 264 } },
// { score: 0.08935828506946564, label: 'hat', box: { xmin: 38, ymin: 174, xmax: 258, ymax: 364 } },
// { score: 0.08530698716640472, label: 'camera', box: { xmin: 187, ymin: 350, xmax: 260, ymax: 411 } },
// { score: 0.08349756896495819, label: 'book', box: { xmin: 261, ymin: 280, xmax: 494, ymax: 425 } }
// ]
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/OKHu5M0RcAlwPkydxBZyB.png)
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |