File size: 1,715 Bytes
d82541f 8c01de8 d82541f 8c01de8 eaa3e49 d82541f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
library_name: transformers.js
pipeline_tag: text-to-speech
tags:
- text-to-audio
---
https://huggingface.co/facebook/mms-tts-hin with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
**Example:** Generate Hindi speech with `Xenova/mms-tts-hin`.
```js
import { pipeline } from '@xenova/transformers';
// Create a text-to-speech pipeline
const synthesizer = await pipeline('text-to-speech', 'Xenova/mms-tts-hin', {
quantized: false, // Remove this line to use the quantized version (default)
});
// Generate speech
const output = await synthesizer('नमस्ते');
console.log(output);
// {
// audio: Float32Array(11264) [ ... ],
// sampling_rate: 16000
// }
```
Optionally, save the audio to a wav file (Node.js):
```js
import wavefile from 'wavefile';
import fs from 'fs';
const wav = new wavefile.WaveFile();
wav.fromScratch(1, output.sampling_rate, '32f', output.audio);
fs.writeFileSync('out.wav', wav.toBuffer());
```
<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/bvNGhhyJ5jX6WMdZVpYxI.wav"></audio>
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |