File size: 1,774 Bytes
99200a9
35ef036
 
 
 
e6178ec
35ef036
99200a9
35ef036
 
 
 
 
99200a9
 
 
e6178ec
99200a9
e6178ec
99200a9
e6178ec
99200a9
e6178ec
99200a9
 
e6178ec
99200a9
e6178ec
 
99200a9
e6178ec
 
 
 
99200a9
e6178ec
 
 
 
 
 
 
 
 
99200a9
e6178ec
 
 
 
99200a9
 
e6178ec
99200a9
e6178ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
base_model: jinaai/jina-embeddings-v2-base-zh
language:
- zh
- en
library_name: transformers.js
license: apache-2.0
tags:
- feature-extraction
- sentence-similarity
- mteb
- sentence_transformers
- transformers
inference: false
---

https://huggingface.co/jinaai/jina-embeddings-v2-base-zh with ONNX weights to be compatible with Transformers.js.

## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```

You can then use the model to compute embeddings, as follows:

```js
import { pipeline, cos_sim } from '@xenova/transformers';

// Create a feature extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/jina-embeddings-v2-base-zh', {
    quantized: false, // Comment out this line to use the quantized version
});

// Compute sentence embeddings
const texts = ['How is the weather today?', '今天天气怎么样?'];
const output = await extractor(texts, { pooling: 'mean', normalize: true });
// Tensor {
//   dims: [2, 768],
// 	 type: 'float32',
//   data: Float32Array(1536)[...],
// 	 size: 1536
// }

// Compute cosine similarity between the two embeddings
const score = cos_sim(output[0].data, output[1].data);
console.log(score);
// 0.7860610759096025
```

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).