File size: 1,928 Bytes
86a0bad 041a619 86a0bad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
library_name: transformers.js
---
https://huggingface.co/WhereIsAI/UAE-Large-V1 with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
You can then use the model to compute embeddings like this:
```js
import { pipeline } from '@xenova/transformers';
// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/UAE-Large-V1', {
quantized: true, // Set this to false to use the full (unquantized) model
});
// Compute sentence embeddings
const sentences = ['That is a happy person', 'That is a very happy person'];
const output = await extractor(sentences, { pooling: 'cls' });
console.log(output);
// Tensor {
// dims: [ 2, 1024 ],
// type: 'float32',
// data: Float32Array(2048) [ -0.1308155655860901, 0.44334232807159424, ... ],
// size: 2048
// }
```
Compute cosine similarity between the two sentences:
```js
import { cos_sim } from '@xenova/transformers';
console.log(cos_sim(output[0].data, output[1].data))
// 0.9586893906734091
```
You can convert the `output` Tensor to a nested JavaScript array using `.tolist()`:
```js
console.log(output.tolist());
// [
// [ -0.1308155655860901, 0.44334232807159424, -0.12212765961885452, ... ],
// [ 0.03931744396686554, 0.30553528666496277, -0.19462820887565613, ... ]
// ]
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |