File size: 1,815 Bytes
c7c0e27 4679a39 7d59f6c c7c0e27 4679a39 7d59f6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: gpl-3.0
library_name: transformers.js
tags:
- apisr
- super-resolution
pipeline_tag: image-to-image
---
https://github.com/Kiteretsu77/APISR with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
**Example:** Upscale an image with `Xenova/4x_APISR_GRL_GAN_generator-onnx`.
```js
import { pipeline } from '@xenova/transformers';
// Create image-to-image pipeline
const upscaler = await pipeline('image-to-image', 'Xenova/4x_APISR_GRL_GAN_generator-onnx', {
quantized: false,
});
// Upscale an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/anime.png';
const output = await upscaler(url);
// RawImage {
// data: Uint8Array(16588800) [ ... ],
// width: 2560,
// height: 1920,
// channels: 3
// }
// (Optional) Save the upscaled image
output.save('upscaled.png');
```
<details>
<summary>See example output</summary>
Input image:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/w2bnLTYnxxNjX-amzYq6A.png)
Output image:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/8sMM1ZGSuPfujECIcM8rY.png)
</details>
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |