File size: 1,815 Bytes
c7c0e27
 
4679a39
 
 
7d59f6c
 
c7c0e27
4679a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d59f6c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: gpl-3.0
library_name: transformers.js
tags:
- apisr
- super-resolution
pipeline_tag: image-to-image
---

https://github.com/Kiteretsu77/APISR with ONNX weights to be compatible with Transformers.js.


## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```

**Example:** Upscale an image with `Xenova/4x_APISR_GRL_GAN_generator-onnx`.
```js
import { pipeline } from '@xenova/transformers';

// Create image-to-image pipeline
const upscaler = await pipeline('image-to-image', 'Xenova/4x_APISR_GRL_GAN_generator-onnx', {
    quantized: false,
});

// Upscale an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/anime.png';
const output = await upscaler(url);
// RawImage {
//   data: Uint8Array(16588800) [ ... ],
//   width: 2560,
//   height: 1920,
//   channels: 3
// }

// (Optional) Save the upscaled image
output.save('upscaled.png');
```

<details>
  <summary>See example output</summary>

  Input image:

  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/w2bnLTYnxxNjX-amzYq6A.png)
  
  Output image:
  
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/8sMM1ZGSuPfujECIcM8rY.png)

</details>

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).