XavierSpycy
commited on
Commit
•
30ac85c
1
Parent(s):
91d4d35
Update model card
Browse files
README.md
CHANGED
@@ -1,5 +1,19 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
# Meta-Llama-3-8B-Instruct-zh-10k: A Llama🦙 which speaks Chinese / 一只说中文的羊驼🦙
|
@@ -46,6 +60,7 @@ This model can be utilized like the original <u>Meta-Llama3</u> but offers enhan
|
|
46 |
|
47 |
我们能够像原版的<u>Meta-Llama3</u>一样使用该模型,而它提供了提升后的中文能力。
|
48 |
|
|
|
49 |
```python
|
50 |
# !pip install accelerate
|
51 |
|
@@ -83,11 +98,120 @@ print(tokenizer.decode(response, skip_special_tokens=True))
|
|
83 |
# 我是一个虚拟的人工智能助手,能够通过自然语言处理技术理解用户的需求并为用户提供帮助。
|
84 |
```
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
Further details about the deployment are available in the GitHub repository [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops).
|
87 |
|
88 |
更多关于部署的细节可以在我的个人仓库 [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops) 获得。
|
89 |
|
90 |
-
## Ethical Considerations, Safety & Risks /
|
91 |
Please refer to [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations) for more information. Key points include bias monitoring, responsible usage guidelines, and transparency in model limitations.
|
92 |
|
93 |
请参考 [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations),以获取更多细节。关键点包括偏见监控、负责任的使用指南和模型限制的透明度。
|
@@ -97,12 +221,16 @@ Please refer to [Meta Llama 3's Ethical Considerations](https://huggingface.co/m
|
|
97 |
|
98 |
- While it performs smoothly in Chinese conversations, further benchmarks are required to evaluate its full capabilities. The quality and quantity of the Chinese corpora used may also limit model outputs.
|
99 |
|
|
|
|
|
100 |
- Additionally, catastrophic forgetting in the fine-tuned model has not been evaluated.
|
101 |
|
102 |
- 该模型的全面的能力尚未全部测试。
|
103 |
|
104 |
- 尽管它在中文对话中表现流畅,但需要更多的测评以评估其完整的能力。中文语料库的质量和数量可能都会对模型输出有所制约。
|
105 |
|
|
|
|
|
106 |
- 另外,微调模型中的灾难性遗忘尚未评估。
|
107 |
|
108 |
## Acknowledgements / 致谢
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
7 |
+
tags:
|
8 |
+
- text-generation
|
9 |
+
- transformers
|
10 |
+
- lora
|
11 |
+
- llama.cpp
|
12 |
+
- autoawq
|
13 |
+
- auto-gptq
|
14 |
+
datasets:
|
15 |
+
- llamafactory/alpaca_zh
|
16 |
+
- llamafactory/alpaca_gpt4_zh
|
17 |
---
|
18 |
|
19 |
# Meta-Llama-3-8B-Instruct-zh-10k: A Llama🦙 which speaks Chinese / 一只说中文的羊驼🦙
|
|
|
60 |
|
61 |
我们能够像原版的<u>Meta-Llama3</u>一样使用该模型,而它提供了提升后的中文能力。
|
62 |
|
63 |
+
#### 1. How to use in transformers
|
64 |
```python
|
65 |
# !pip install accelerate
|
66 |
|
|
|
98 |
# 我是一个虚拟的人工智能助手,能够通过自然语言处理技术理解用户的需求并为用户提供帮助。
|
99 |
```
|
100 |
|
101 |
+
#### 2. How to use in llama.cpp / 如何在llama.cpp中使用
|
102 |
+
|
103 |
+
|
104 |
+
```python
|
105 |
+
# CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS # -DLLAMA_CUDA=on" \
|
106 |
+
# pip install llama-cpp-python \
|
107 |
+
# --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121
|
108 |
+
|
109 |
+
# Please download the model weights first. / 请先下载模型权重。
|
110 |
+
|
111 |
+
from llama_cpp import Llama
|
112 |
+
|
113 |
+
llm = Llama(
|
114 |
+
model_path="/mnt/sdrive/jiarui/Meta-Llama-3-8B-Instruct-zh-10k-GGUF/meta-llama-3-8b-instruct-zh-10k.Q8_0.gguf",
|
115 |
+
n_gpu_layers=-1)
|
116 |
+
|
117 |
+
# Alternatively / 或者
|
118 |
+
# llm = Llama.from_pretrained(
|
119 |
+
# repo_id="XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GGUF",
|
120 |
+
# filename="*Q8_0.gguf",
|
121 |
+
# verbose=False
|
122 |
+
# )
|
123 |
+
|
124 |
+
output = llm(
|
125 |
+
"Q: 你好,你是谁?A:", # Prompt
|
126 |
+
max_tokens=256, # Generate up to 32 tokens, set to None to generate up to the end of the context window
|
127 |
+
stop=["Q:", "\n"], # Stop generating just before the model would generate a new question
|
128 |
+
echo=True # Echo the prompt back in the output
|
129 |
+
) # Generate a completion, can also call create_completion
|
130 |
+
|
131 |
+
print(output['choices'][0]['text'].split("A:")[1].strip())
|
132 |
+
|
133 |
+
# 我是一个人工智能聊天机器人,我的名字叫做“智慧助手”,我由一群程序员设计和开发的。我的主要任务就是通过与您交流来帮助您解决问题,为您提供相关的建议和支持。
|
134 |
+
```
|
135 |
+
|
136 |
+
#### 3. How to use with AutoAWQ / 如何与AutoAWQ一起使用
|
137 |
+
```python
|
138 |
+
# !pip install autoawq
|
139 |
+
|
140 |
+
import torch
|
141 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
142 |
+
|
143 |
+
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-AWQ"
|
144 |
+
|
145 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
146 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
147 |
+
|
148 |
+
prompt = "你好,你是谁?"
|
149 |
+
|
150 |
+
messages = [
|
151 |
+
{"role": "system", "content": "你是一个乐于助人的助手。"},
|
152 |
+
{"role": "user", "content": prompt}]
|
153 |
+
|
154 |
+
input_ids = tokenizer.apply_chat_template(
|
155 |
+
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
156 |
+
|
157 |
+
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
158 |
+
|
159 |
+
outputs = model.generate(
|
160 |
+
input_ids,
|
161 |
+
max_new_tokens=256,
|
162 |
+
eos_token_id=terminators,
|
163 |
+
do_sample=True,
|
164 |
+
temperature=0.6,
|
165 |
+
top_p=0.9)
|
166 |
+
|
167 |
+
response = outputs[0][input_ids.shape[-1]:]
|
168 |
+
|
169 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
170 |
+
# 你好!我是一个人工智能助手,我的目的是帮助人们解决问题,回答问题,提供信息和建议。
|
171 |
+
```
|
172 |
+
|
173 |
+
#### 4. How to use with AutoGPTQ / 如何与AutoGPTQ一起使用
|
174 |
+
```python
|
175 |
+
# !pip install auto-gptq --no-build-isolation
|
176 |
+
|
177 |
+
import torch
|
178 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
179 |
+
|
180 |
+
model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GPTQ"
|
181 |
+
|
182 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
183 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
184 |
+
|
185 |
+
prompt = "什么是机器学习?"
|
186 |
+
|
187 |
+
messages = [
|
188 |
+
{"role": "system", "content": "你是一个乐于助人的助手。"},
|
189 |
+
{"role": "user", "content": prompt}]
|
190 |
+
|
191 |
+
input_ids = tokenizer.apply_chat_template(
|
192 |
+
messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
193 |
+
|
194 |
+
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
195 |
+
|
196 |
+
outputs = model.generate(
|
197 |
+
input_ids,
|
198 |
+
max_new_tokens=256,
|
199 |
+
eos_token_id=terminators,
|
200 |
+
do_sample=True,
|
201 |
+
temperature=0.6,
|
202 |
+
top_p=0.9)
|
203 |
+
|
204 |
+
response = outputs[0][input_ids.shape[-1]:]
|
205 |
+
|
206 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
207 |
+
# 机器学习是人工智能(AI)的一个分支,它允许计算机从数据中学习并改善其性能。它是一种基于算法的方法,用于从数据中识别模式并进行预测。机器学习算法可以从数据中学习,例如文本、图像和音频,并从中获得知识和见解。
|
208 |
+
```
|
209 |
+
|
210 |
Further details about the deployment are available in the GitHub repository [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops).
|
211 |
|
212 |
更多关于部署的细节可以在我的个人仓库 [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops) 获得。
|
213 |
|
214 |
+
## Ethical Considerations, Safety & Risks / 伦理考量、安全性和风险
|
215 |
Please refer to [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations) for more information. Key points include bias monitoring, responsible usage guidelines, and transparency in model limitations.
|
216 |
|
217 |
请参考 [Meta Llama 3's Ethical Considerations](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct#ethical-considerations-and-limitations),以获取更多细节。关键点包括偏见监控、负责任的使用指南和模型限制的透明度。
|
|
|
221 |
|
222 |
- While it performs smoothly in Chinese conversations, further benchmarks are required to evaluate its full capabilities. The quality and quantity of the Chinese corpora used may also limit model outputs.
|
223 |
|
224 |
+
- Based on current observations, it fundamentally meets the standards in common sense, logic, sentiment analysis, safety, writing, code, and function calls. However, there is room for improvement in role-playing, mathematics, and handling complex tasks with the same text but different meanings.
|
225 |
+
|
226 |
- Additionally, catastrophic forgetting in the fine-tuned model has not been evaluated.
|
227 |
|
228 |
- 该模型的全面的能力尚未全部测试。
|
229 |
|
230 |
- 尽管它在中文对话中表现流畅,但需要更多的测评以评估其完整的能力。中文语料库的质量和数量可能都会对模型输出有所制约。
|
231 |
|
232 |
+
- 根据目前的观察,它在常识、逻辑、情绪分析、安全性、写作、代码和函数调用上基本达标,然而,在角色扮演、数学、复杂的同文异义等任务上有待提高。
|
233 |
+
|
234 |
- 另外,微调模型中的灾难性遗忘尚未评估。
|
235 |
|
236 |
## Acknowledgements / 致谢
|