metadata
base_model: sentence-transformers/all-distilroberta-v1
datasets:
- sentence-transformers/all-nli
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A man is jumping unto his filthy bed.
sentences:
- A young male is looking at a newspaper while 2 females walks past him.
- The bed is dirty.
- The man is on the moon.
- source_sentence: >-
A carefully balanced male stands on one foot near a clean ocean beach
area.
sentences:
- A man is ouside near the beach.
- Three policemen patrol the streets on bikes
- A man is sitting on his couch.
- source_sentence: The man is wearing a blue shirt.
sentences:
- Near the trashcan the man stood and smoked
- >-
A man in a blue shirt leans on a wall beside a road with a blue van and
red car with water in the background.
- A man in a black shirt is playing a guitar.
- source_sentence: The girls are outdoors.
sentences:
- Two girls riding on an amusement part ride.
- a guy laughs while doing laundry
- >-
Three girls are standing together in a room, one is listening, one is
writing on a wall and the third is talking to them.
- source_sentence: >-
A construction worker peeking out of a manhole while his coworker sits on
the sidewalk smiling.
sentences:
- A worker is looking out of a manhole.
- A man is giving a presentation.
- The workers are both inside the manhole.
model-index:
- name: test
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.07790262172284644
name: Cosine Accuracy
- type: dot_accuracy
value: 0.9220973782771535
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.078330658105939
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.07790262172284644
name: Euclidean Accuracy
- type: max_accuracy
value: 0.078330658105939
name: Max Accuracy
- type: cosine_accuracy
value: 0.09212121212121212
name: Cosine Accuracy
- type: dot_accuracy
value: 0.9078787878787878
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.09696969696969697
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.09212121212121212
name: Euclidean Accuracy
- type: max_accuracy
value: 0.09696969696969697
name: Max Accuracy
test
This is a sentence-transformers model finetuned from sentence-transformers/all-distilroberta-v1 on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-distilroberta-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Xavarary/mpnet-base-all-medium-triplet")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.0779 |
dot_accuracy | 0.9221 |
manhattan_accuracy | 0.0783 |
euclidean_accuracy | 0.0779 |
max_accuracy | 0.0783 |
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.0921 |
dot_accuracy | 0.9079 |
manhattan_accuracy | 0.097 |
euclidean_accuracy | 0.0921 |
max_accuracy | 0.097 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | all-nli-dev_max_accuracy |
---|---|---|---|
0 | 0 | - | 0.0783 |
0.016 | 100 | 0.9326 | - |
0.032 | 200 | 0.7562 | - |
0.048 | 300 | 1.0227 | - |
0.064 | 400 | 0.6815 | - |
0.08 | 500 | 0.7091 | - |
0.096 | 600 | 0.8731 | - |
0.112 | 700 | 0.8263 | - |
0.128 | 800 | 0.9691 | - |
0.144 | 900 | 0.9814 | - |
0.16 | 1000 | 0.8569 | - |
0.176 | 1100 | 0.9649 | - |
0.192 | 1200 | 0.8079 | - |
0.208 | 1300 | 0.6868 | - |
0.224 | 1400 | 0.6749 | - |
0.24 | 1500 | 0.6968 | - |
0.256 | 1600 | 0.5537 | - |
0.272 | 1700 | 0.7242 | - |
0.288 | 1800 | 0.7363 | - |
0.304 | 1900 | 0.5771 | - |
0.32 | 2000 | 0.5519 | - |
0.336 | 2100 | 0.4775 | - |
0.352 | 2200 | 0.4376 | - |
0.368 | 2300 | 0.6341 | - |
0.384 | 2400 | 0.5207 | - |
0.4 | 2500 | 0.5106 | - |
0.416 | 2600 | 0.4666 | - |
0.432 | 2700 | 0.8047 | - |
0.448 | 2800 | 0.6638 | - |
0.464 | 2900 | 0.6554 | - |
0.48 | 3000 | 0.6055 | - |
0.496 | 3100 | 0.5947 | - |
0.512 | 3200 | 0.4352 | - |
0.528 | 3300 | 0.4421 | - |
0.544 | 3400 | 0.4187 | - |
0.56 | 3500 | 0.4056 | - |
0.576 | 3600 | 0.4046 | - |
0.592 | 3700 | 0.3629 | - |
0.608 | 3800 | 0.3428 | - |
0.624 | 3900 | 0.362 | - |
0.64 | 4000 | 0.5858 | - |
0.656 | 4100 | 0.7457 | - |
0.672 | 4200 | 0.7033 | - |
0.688 | 4300 | 0.5343 | - |
0.704 | 4400 | 0.4125 | - |
0.72 | 4500 | 0.4567 | - |
0.736 | 4600 | 0.4921 | - |
0.752 | 4700 | 0.5264 | - |
0.768 | 4800 | 0.4883 | - |
0.784 | 4900 | 0.4231 | - |
0.8 | 5000 | 0.5048 | - |
0.816 | 5100 | 0.4044 | - |
0.832 | 5200 | 0.5102 | - |
0.848 | 5300 | 0.3751 | - |
0.864 | 5400 | 0.5139 | - |
0.88 | 5500 | 0.4439 | - |
0.896 | 5600 | 0.3999 | - |
0.912 | 5700 | 0.4932 | - |
0.928 | 5800 | 0.4349 | - |
0.944 | 5900 | 0.6022 | - |
0.96 | 6000 | 0.5906 | - |
0.976 | 6100 | 0.5021 | - |
0.992 | 6200 | 0.0002 | - |
1.0 | 6250 | - | 0.0970 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.1.1
- Transformers: 4.38.0
- PyTorch: 2.2.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}