XAgentTeam's picture
Update README.md
9e07201
|
raw
history blame
1.73 kB
metadata
license: apache-2.0
tags:
  - function call

XAgentLLaMa is a collection of fine-tuned generative text models ranging in scale from 7 billion to 34 billion based on Llama 2 and Code Llama. This is the repository for the 34B fine-tuned model, optimized for XAgent with strong function call ability.

Warning: This is a preview version of the model, does not stand for final quality.

We collect around 300K pieces of data and fine-tune Code-Llama 34B with 48 A100 GPUs. More details will be released later.

This model is trained with a special function call format, and should be used with XAgentGen to get best performance.

XAgentGen input format:

"messages":[
    {
    "role":"system",
    "content":"...."
    },
    {...}
],
"global_arguments":{ // Optional
    "type": "object",
    "properties":{
        "k1":{
            "type":"integer",
            "description":"..."
        },
        "k2":{
            "type":"string",
            "description":"..."
        },
        ...
    },
    "required":["k1","k2"]
},
"functions":[// Optional
    {
        "name":"func1",
        "description":"...",
        "parameters":{
            "type":"object",
            "properties":{...},
            "required":[...]
        }
    },
    ....
],
"function_call": {// Optional
    "name":"func1"
}

XAgentGen call output format:

{
    "global_arguments": {
        "k1":"v1",
        "k2":"v2",
        "k3":"v3",
        ...
    },
    "function_call":{
        "name":"func1",
        "arguments":{...}
    }
}

If the json format of global_arguments is provided, the output will contains the global_arguments at any time.