File size: 4,765 Bytes
65a0eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee8c043
 
 
 
 
65a0eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823f133
65a0eff
 
 
 
 
 
 
 
 
 
1057217
65a0eff
1057217
 
 
 
 
ee8c043
 
 
1057217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65a0eff
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.models.seamless_m4t.modeling_seamless_m4t import (
    _compute_new_attention_mask,
)
from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2 import (
    SeamlessM4Tv2SpeechEncoder,
    SeamlessM4Tv2PreTrainedModel,
)
from .configuration_seamless_m4t_v2_speech_encoder import (
    MODEL_TYPE,
    SeamlessM4Tv2EncoderConfig,
)
from transformers.modeling_outputs import SequenceClassifierOutput

from transformers.models.auto import (
    AutoModel,
    AutoModelForAudioClassification,
    AutoModelForSequenceClassification,
)


class SeamlessM4Tv2SpeechEncoder(SeamlessM4Tv2SpeechEncoder):
    model_type = MODEL_TYPE
    config_class = SeamlessM4Tv2EncoderConfig

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    @staticmethod
    def mean_pooling(
        hidden_states: torch.Tensor, attention_mask: torch.Tensor
    ) -> torch.Tensor:
        # hidden_states shape: (batch_size, sequence_length, hidden_size)
        # attention_mask shape: (batch_size, sequence_length)

        # Apply attention mask and avoid division by zero
        input_mask_expanded = (
            attention_mask.unsqueeze(-1).expand(hidden_states.size()).float()
        )
        sum_hidden_states = torch.sum(hidden_states * input_mask_expanded, 1)
        sum_mask = input_mask_expanded.sum(1)

        return sum_hidden_states / torch.clamp(sum_mask, min=1e-9)


class SeamlessM4Tv2ForAudioClassification(SeamlessM4Tv2PreTrainedModel):
    model_type = MODEL_TYPE
    base_model_prefix = "model"
    config_class = SeamlessM4Tv2EncoderConfig

    def __init__(self, config, *args, **kwargs):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.model = SeamlessM4Tv2SpeechEncoder(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

    def forward(
        self,
        input_features: torch.Tensor,
        attention_mask: torch.Tensor,
        labels: None | torch.Tensor,
        *args,
        **kwargs,
    ):
        output_hidden_states = kwargs.pop("output_hidden_states", False)
        outputs = self.model(
            input_features,
            attention_mask,
            output_hidden_states=output_hidden_states,
            *args,
            **kwargs,
        )
        hidden_states = outputs.last_hidden_state
        if attention_mask is not None and self.model.config.add_adapter:
            sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(
                attention_mask
            ).to(outputs.last_hidden_state.device)
            attention_mask = _compute_new_attention_mask(
                hidden_states=hidden_states, seq_lens=sub_sampled_lengths
            )
        hidden_states = self.model.mean_pooling(
            outputs.last_hidden_state, attention_mask
        )
        logits = self.score(hidden_states)

        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (
                    labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"
            if self.config.problem_type == "regression":
                loss_fct = F.mse_loss
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = F.cross_entropy
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = F.binary_cross_entropy_with_logits
                loss = loss_fct(logits, labels)

        return SequenceClassifierOutput(
            loss=loss,  # type: ignore
            logits=logits,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
        )


AutoModel.register(SeamlessM4Tv2EncoderConfig, SeamlessM4Tv2SpeechEncoder)
AutoModelForAudioClassification.register(
    SeamlessM4Tv2EncoderConfig, SeamlessM4Tv2ForAudioClassification
)
AutoModelForSequenceClassification.register(
    SeamlessM4Tv2EncoderConfig, SeamlessM4Tv2ForAudioClassification
)