|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- llama |
|
- InstructGPT |
|
- hf, |
|
--- |
|
|
|
|
|
|
|
## usage : |
|
```python |
|
import os |
|
import torch |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
# set HF_TOKEN in terminal as export HF_TOKEN=hf_*** |
|
auth_token = os.environ.get("HF_TOKEN", True) |
|
|
|
model_name = "Writer/camel-5b" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, use_auth_token=auth_token |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
use_auth_token=auth_token, |
|
) |
|
|
|
|
|
instruction = "Describe a futuristic device that revolutionizes space travel." |
|
|
|
|
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"Below is an instruction that describes a task, paired with an input that provides further context. " |
|
"Write a response that appropriately completes the request\n\n" |
|
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:" |
|
), |
|
"prompt_no_input": ( |
|
"Below is an instruction that describes a task. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Response:" |
|
), |
|
} |
|
|
|
text = ( |
|
PROMPT_DICT["prompt_no_input"].format(instruction=instruction) |
|
if not input |
|
else PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input) |
|
) |
|
|
|
model_inputs = tokenizer(text, return_tensors="pt").to("cuda") |
|
output_ids = model.generate( |
|
**model_inputs, |
|
max_length=100, |
|
) |
|
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] |
|
clean_output = output_text.split("### Response:")[1].strip() |
|
|
|
print(clean_output) |
|
|
|
``` |