Wiam's picture
End of training
310bfaf verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-babycry-v5
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.782608695652174
          - name: F1
            type: f1
            value: 0.6871686108165429
          - name: Precision
            type: precision
            value: 0.6124763705103969
          - name: Recall
            type: recall
            value: 0.782608695652174

distilhubert-finetuned-babycry-v5

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8441
  • Accuracy: {'accuracy': 0.782608695652174}
  • F1: 0.6872
  • Precision: 0.6125
  • Recall: 0.7826

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7047 1.0870 25 0.9225 {'accuracy': 0.782608695652174} 0.6872 0.6125 0.7826
0.6071 2.1739 50 0.9175 {'accuracy': 0.782608695652174} 0.6872 0.6125 0.7826
0.6525 3.2609 75 0.8866 {'accuracy': 0.782608695652174} 0.6872 0.6125 0.7826
0.6558 4.3478 100 0.8433 {'accuracy': 0.782608695652174} 0.6872 0.6125 0.7826
0.5577 5.4348 125 0.8705 {'accuracy': 0.782608695652174} 0.6872 0.6125 0.7826
0.7055 6.5217 150 0.8323 {'accuracy': 0.782608695652174} 0.6872 0.6125 0.7826
0.6092 7.6087 175 0.8440 {'accuracy': 0.782608695652174} 0.6872 0.6125 0.7826

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1