File size: 14,652 Bytes
51a772b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6018811d30>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6018811dc0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6018811e50>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6018811ee0>",
"_build": "<function ActorCriticPolicy._build at 0x7f6018811f70>",
"forward": "<function ActorCriticPolicy.forward at 0x7f6018815040>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f60188150d0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6018815160>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f60188151f0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6018815280>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6018815310>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f60188153a0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f60188170c0>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1682165685703613603,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMbnPD70aTk/20o9vRMJCb8HhzY+8p4RvgAAAAAAAAAAACsCvZvFyz7i9vK8CW3MvqJ/wbwAgeK7AAAAAAAAAABGrzG+KJGXvBNVxrz8U4A75loKPvTWS7wAAIA/AACAP2YnhT1fkRI/ky8JvTIv6r4zZpY9yKmyvAAAAAAAAAAAGj0pPWu7hj0VGV6+JFGHvoB98L3tQVU9AAAAAAAAAAAChYG+q5kWPydCjz5ke8G+uR/vvesBXD4AAAAAAAAAAEMJT75/s00/xKwpvkHsCL9SGlS+WqvOugAAAAAAAAAALWAzPlGwkj9Y4ok+4rYKv2c1Rz5S2Ak9AAAAAAAAAAAAXpU9/AQnPW6vgL5tPHK+uZCbvYCV87oAAAAAAAAAAGP4hD6VPUI/6lLKPQAeyL7cAYo+mo2RvQAAAAAAAAAAzVxHu44VtD8UjB2+7uTQvYnzZDt6Rw09AAAAAAAAAADNJAy85gmpPyb3sLxmBwq/ZFkrPTgIUzkAAAAAAAAAAObgGj1cHy+6k3kUtGw5UK0UwQ87jHakMwAAgD8AAIA/c9S8PXyfAj6lK1+9U4yMvkwEVj3D+Vy9AAAAAAAAAABmF/+9uDqgOhb/UjPuyk2ymgGNvHk0GbQAAIA/AACAPyCQO74OE8u8kpeyOrX3PznkFDc+OH36uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRN5y9aN9cUCUhpRSlIwBbJRLzowBdJRHQJoDk9SuQp51fZQoaAZoCWgPQwiUvhByHu5wQJSGlFKUaBVL42gWR0CaBDs7MgU2dX2UKGgGaAloD0MIyCWOPNAycECUhpRSlGgVS91oFkdAmgUucpb2UXV9lChoBmgJaA9DCD21+uqqK3FAlIaUUpRoFUviaBZHQJoFcdBBzFN1fZQoaAZoCWgPQwghBU8hF2ZyQJSGlFKUaBVNAwFoFkdAmgX7CSA6MnV9lChoBmgJaA9DCEm5+xyfr3FAlIaUUpRoFUvYaBZHQJoGJoUSIxh1fZQoaAZoCWgPQwj3ArNCEfJxQJSGlFKUaBVL4WgWR0CaBrFWXC0odX2UKGgGaAloD0MIptWQuMcncECUhpRSlGgVS9VoFkdAmgcexnnMdXV9lChoBmgJaA9DCDUMHxGTVHBAlIaUUpRoFUvOaBZHQJoHI4YJmd11fZQoaAZoCWgPQwjuBzwwADZtQJSGlFKUaBVL4mgWR0CaB4JHiFTOdX2UKGgGaAloD0MI2ubG9MTacECUhpRSlGgVS79oFkdAmgfK/dqL0nV9lChoBmgJaA9DCJd1/1hIbnFAlIaUUpRoFU0OAWgWR0CaCBt9QXQ/dX2UKGgGaAloD0MIt5p1xnd6bkCUhpRSlGgVS8RoFkdAmghE3XI2fnV9lChoBmgJaA9DCCJS0y5mkHFAlIaUUpRoFUvxaBZHQJoI1tvXK8t1fZQoaAZoCWgPQwh07KAS18JyQJSGlFKUaBVL3GgWR0CaCO0fozN2dX2UKGgGaAloD0MIKeyi6EFrc0CUhpRSlGgVS9JoFkdAmgkxwAEMb3V9lChoBmgJaA9DCNF14Qdndm5AlIaUUpRoFUvBaBZHQJoJMV58jRl1fZQoaAZoCWgPQwhU/Urnw/JwQJSGlFKUaBVL0mgWR0CaCl531SOzdX2UKGgGaAloD0MIet/42jOic0CUhpRSlGgVS+RoFkdAmgsWTs6aLHV9lChoBmgJaA9DCD51rFJ6F3FAlIaUUpRoFUvsaBZHQJoL3fgrH2h1fZQoaAZoCWgPQwjgha3ZinNyQJSGlFKUaBVL6WgWR0CaC/TTvy9VdX2UKGgGaAloD0MIlPdxNAfGcUCUhpRSlGgVS9doFkdAmgzVaB7NS3V9lChoBmgJaA9DCA6itaKNSXJAlIaUUpRoFUv3aBZHQJoM6OktVaR1fZQoaAZoCWgPQwhavcPt0CZyQJSGlFKUaBVNSwNoFkdAmgz8ZLqUvHV9lChoBmgJaA9DCIavr3Wp6HFAlIaUUpRoFUv+aBZHQJoNdNL127p1fZQoaAZoCWgPQwiV10rorjdxQJSGlFKUaBVL12gWR0CaDXSzw+dLdX2UKGgGaAloD0MI8ZwtIPSrcUCUhpRSlGgVS9VoFkdAmg2OsDGLk3V9lChoBmgJaA9DCDtzDwmfaHJAlIaUUpRoFU0TAWgWR0CaDeXenAIqdX2UKGgGaAloD0MI01CjkOSlckCUhpRSlGgVS/loFkdAmg3lR1oxpXV9lChoBmgJaA9DCLYtymwQvW5AlIaUUpRoFUvnaBZHQJoO1hF3IMl1fZQoaAZoCWgPQwh0C12JQAxvQJSGlFKUaBVL8mgWR0CaDxj9n9NvdX2UKGgGaAloD0MIKSMuAI1Nb0CUhpRSlGgVS9BoFkdAmg+FNUOuq3V9lChoBmgJaA9DCAMixJXzGnJAlIaUUpRoFU0fAWgWR0CaD+wUQCjldX2UKGgGaAloD0MI4C9mS5bLcUCUhpRSlGgVTS8BaBZHQJoQOliz9jx1fZQoaAZoCWgPQwhivOZV3RVwQJSGlFKUaBVLwmgWR0CaEIs+3YthdX2UKGgGaAloD0MIGqVL/1IccUCUhpRSlGgVS/NoFkdAmhEIVuaWonV9lChoBmgJaA9DCBCVRszsYnBAlIaUUpRoFUvZaBZHQJoRLXtjTa11fZQoaAZoCWgPQwgVGR2QxN1yQJSGlFKUaBVLz2gWR0CaEbpbD/EPdX2UKGgGaAloD0MIKovCLgqvb0CUhpRSlGgVS8VoFkdAmhIOR5kbxXV9lChoBmgJaA9DCPWAechUyXBAlIaUUpRoFUvFaBZHQJoSKsfaHsV1fZQoaAZoCWgPQwhZTdcT3dhtQJSGlFKUaBVLyWgWR0CaEiqMFUyYdX2UKGgGaAloD0MIHeihtk0NckCUhpRSlGgVS+JoFkdAmhJFDfFaS3V9lChoBmgJaA9DCKPMBpkkvXNAlIaUUpRoFUv2aBZHQJoSkH3UQTV1fZQoaAZoCWgPQwgA4xk0dIpxQJSGlFKUaBVLz2gWR0CaErXTEzfrdX2UKGgGaAloD0MI5Euo4LDBcUCUhpRSlGgVS+hoFkdAmhNCRbKRuHV9lChoBmgJaA9DCJEpH4Lq1HBAlIaUUpRoFUvFaBZHQJoTqTB68g91fZQoaAZoCWgPQwjS4SGMn8dvQJSGlFKUaBVL0WgWR0CaE7ER8MNMdX2UKGgGaAloD0MIpWd6iTFPckCUhpRSlGgVS9NoFkdAmhTD5wfhdnV9lChoBmgJaA9DCDHSi9r9KnFAlIaUUpRoFUvQaBZHQJoU/ldTo+x1fZQoaAZoCWgPQwjM07miFHRyQJSGlFKUaBVL+mgWR0CaFUwDvE0jdX2UKGgGaAloD0MI9E4F3PPIcECUhpRSlGgVS8toFkdAmhWsDbJwKnV9lChoBmgJaA9DCDigpSuYmXBAlIaUUpRoFUvgaBZHQJoVsMhHLA51fZQoaAZoCWgPQwirItxklF1wQJSGlFKUaBVL2mgWR0CaFin5i3G5dX2UKGgGaAloD0MIECTvHMp4b0CUhpRSlGgVS85oFkdAmhbwHZ9NOHV9lChoBmgJaA9DCEok0csop3FAlIaUUpRoFUvkaBZHQJoXD/kvK2d1fZQoaAZoCWgPQwjE0VW6+29wQJSGlFKUaBVL2mgWR0CaFz+s5n14dX2UKGgGaAloD0MIYrzmVR3dbkCUhpRSlGgVS81oFkdAmhdkdRzij3V9lChoBmgJaA9DCGNFDaYhknFAlIaUUpRoFUvkaBZHQJoXY6/7BO51fZQoaAZoCWgPQwh4uYjvRLNyQJSGlFKUaBVL4GgWR0CaF4B9Tgl4dX2UKGgGaAloD0MIx9l0BHDIbkCUhpRSlGgVS9doFkdAmhhoOH31z3V9lChoBmgJaA9DCC3ovTGET3NAlIaUUpRoFUvQaBZHQJoYqNhmXgN1fZQoaAZoCWgPQwjgFFYqaGNxQJSGlFKUaBVNCgFoFkdAmho3bAUL2HV9lChoBmgJaA9DCI/9LJaisXFAlIaUUpRoFUvjaBZHQJoacjlgc951fZQoaAZoCWgPQwgNN+DzQ8NnQJSGlFKUaBVNTgFoFkdAmhrrVe8f3nV9lChoBmgJaA9DCMmqCDfZunNAlIaUUpRoFUvyaBZHQJobHqKP4mF1fZQoaAZoCWgPQwj0v1yL1mNxQJSGlFKUaBVL62gWR0CaG0NKyv9tdX2UKGgGaAloD0MIqpm1FBC4cUCUhpRSlGgVS9poFkdAmhtA2qDK5nV9lChoBmgJaA9DCKpIhbHF7XBAlIaUUpRoFUu6aBZHQJocCKBNEgJ1fZQoaAZoCWgPQwjt72yPHgZyQJSGlFKUaBVL/WgWR0CaHB8JD3M7dX2UKGgGaAloD0MIMpBnl+//cECUhpRSlGgVS+xoFkdAmhw5ntfG/HV9lChoBmgJaA9DCCxJnuv7o29AlIaUUpRoFUvuaBZHQJodDzOHFgl1fZQoaAZoCWgPQwiS66aU1ylxQJSGlFKUaBVL3WgWR0CaHRW0Z3s5dX2UKGgGaAloD0MIiBHCo03hckCUhpRSlGgVS+9oFkdAmh2C4Bmwq3V9lChoBmgJaA9DCFtdTgkI+m9AlIaUUpRoFUvTaBZHQJoeKon8baR1fZQoaAZoCWgPQwiJJHoZhctyQJSGlFKUaBVL+2gWR0CaHwa37UG3dX2UKGgGaAloD0MIQ3HHmzxpckCUhpRSlGgVS9NoFkdAmiAxjSXt0HV9lChoBmgJaA9DCCkiwyqeOnJAlIaUUpRoFUvRaBZHQJog5fOUt7N1fZQoaAZoCWgPQwh6HXHIxulwQJSGlFKUaBVL3GgWR0CaIP+G47RwdX2UKGgGaAloD0MIbywoDErHbUCUhpRSlGgVS8loFkdAmiHXsHB1tHV9lChoBmgJaA9DCGVuvhGds3FAlIaUUpRoFUvvaBZHQJoh+GgzxgB1fZQoaAZoCWgPQwgzUYTULSlwQJSGlFKUaBVL1GgWR0CaIlOsDGLldX2UKGgGaAloD0MIKNNocvEDckCUhpRSlGgVTQABaBZHQJoigSCe2/l1fZQoaAZoCWgPQwgWbY5zmxpvQJSGlFKUaBVNJQFoFkdAmiJ9pRGc4HV9lChoBmgJaA9DCNV5VPyfW3JAlIaUUpRoFUvnaBZHQJoipa7mMfl1fZQoaAZoCWgPQwhPXfksD6BwQJSGlFKUaBVLy2gWR0CaIwRa5f+kdX2UKGgGaAloD0MIFhObj2vZb0CUhpRSlGgVS+xoFkdAmiP2N3np0XV9lChoBmgJaA9DCNpTck5siXFAlIaUUpRoFUvBaBZHQJoj/Ljghr51fZQoaAZoCWgPQwhl4etrXTRwQJSGlFKUaBVL3mgWR0CaJBmJ3xFzdX2UKGgGaAloD0MIKXXJOAYRckCUhpRSlGgVS+1oFkdAmiXzwQUYbnV9lChoBmgJaA9DCDHNdK8TQnFAlIaUUpRoFUu4aBZHQJomJxR2r4p1fZQoaAZoCWgPQwggKo2YmWJxQJSGlFKUaBVL3mgWR0CaJp/XGwRodX2UKGgGaAloD0MISKmEJzSJcUCUhpRSlGgVS8doFkdAmiePUrkKeHV9lChoBmgJaA9DCDWzlgISZHFAlIaUUpRoFUvCaBZHQJon31uivgZ1fZQoaAZoCWgPQwhcAvBPqbVwQJSGlFKUaBVL82gWR0CaKA4wyqMndX2UKGgGaAloD0MIfnA+dSxhc0CUhpRSlGgVS81oFkdAmihqUu+RHXV9lChoBmgJaA9DCKm/XmFBmnBAlIaUUpRoFUvYaBZHQJootVktmL91fZQoaAZoCWgPQwjQJ/Ik6YlzQJSGlFKUaBVL72gWR0CaKN+m3vx6dX2UKGgGaAloD0MIlj50Qb2EcECUhpRSlGgVS95oFkdAmikHsHB1tHV9lChoBmgJaA9DCGoWaHeIbXNAlIaUUpRoFUvFaBZHQJophjriVB51fZQoaAZoCWgPQwjHSPYItSJzQJSGlFKUaBVL3mgWR0CaKmD0UXYUdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |