File size: 11,332 Bytes
3c3b47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f9d4fd
3c3b47c
8f9d4fd
3c3b47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from torch.utils.data import Dataset
import torch
from torch import nn, Tensor
import torch.nn.functional as F
import torchaudio
import os
import logging
from torchvision.models import resnet50, ResNet50_Weights, resnet152, resnet18, resnet34, ResNet152_Weights
from PIL import Image
from time import strftime
import math
import numpy as np
import moviepy.editor as mpe


class VideoDataset(Dataset):
    def __init__(self, data_dir):
        self.data_dir = data_dir
        self.data_map = []

        dir_map = os.listdir(data_dir)
        for d in dir_map:
            name, extension = os.path.splitext(d)
            if extension == ".mp4":
                self.data_map.append({"video": os.path.join(data_dir, d)})

    def __len__(self):
        return len(self.data_map)

    def __getitem__(self, idx):
        return self.data_map[idx]["video"]


# input: video_path, output: wav_music
class VideoToT5(nn.Module):
    def __init__(self,
                 device: str,
                 video_extraction_framerate: int,
                 encoder_input_dimension: int,
                 encoder_output_dimension: int,
                 encoder_heads: int,
                 encoder_dim_feedforward: int,
                 encoder_layers: int
                 ):
        super().__init__()
        self.video_extraction_framerate = video_extraction_framerate
        self.video_feature_extractor = VideoFeatureExtractor(video_extraction_framerate=video_extraction_framerate,
                                                             device=device)
        self.video_encoder = VideoEncoder(
            device,
            encoder_input_dimension,
            encoder_output_dimension,
            encoder_heads,
            encoder_dim_feedforward,
            encoder_layers
        )

    def forward(self, video_paths: [str]):
        image_embeddings = []
        for video_path in video_paths:
            video = mpe.VideoFileClip(video_path)
            video_embedding = self.video_feature_extractor(video)
            image_embeddings.append(video_embedding)
        video_embedding = torch.stack(
            image_embeddings)  # resulting shape: [batch_size, video_extraction_framerate, resnet_output_dimension]
        # not used, gives worse results!
        # video_embeddings = torch.mean(video_embeddings, 0, True)  # average out all image embedding to one video embedding

        t5_embeddings = self.video_encoder(video_embedding)  # T5 output: [batch_size, num_tokens,
        # t5_embedding_size]
        return t5_embeddings


class VideoEncoder(nn.Module):
    def __init__(self,
                 device: str,
                 encoder_input_dimension: int,
                 encoder_output_dimension: int,
                 encoder_heads: int,
                 encoder_dim_feedforward: int,
                 encoder_layers: int
                 ):
        super().__init__()
        self.device = device
        self.encoder = (nn.TransformerEncoder(
            nn.TransformerEncoderLayer(
                d_model=encoder_input_dimension,
                nhead=encoder_heads,
                dim_feedforward=encoder_dim_feedforward
            ),
            num_layers=encoder_layers,
        )
        ).to(device)

        # linear layer to match T5 embedding dimension
        self.linear = (nn.Linear(
            in_features=encoder_input_dimension,
            out_features=encoder_output_dimension)
                       .to(device))

    def forward(self, x):
        assert x.dim() == 3
        x = torch.transpose(x, 0, 1)  # encoder expects [sequence_length, batch_size, embedding_dimension]
        x = self.encoder(x)  # encoder forward pass
        x = self.linear(x)  # forward pass through the linear layer
        x = torch.transpose(x, 0, 1)  # shape: [batch_size, sequence_length, embedding_dimension]
        return x


class VideoFeatureExtractor(nn.Module):
    def __init__(self,
                 device: str,
                 video_extraction_framerate: int = 1,
                 resnet_output_dimension: int = 2048):
        super().__init__()
        self.device = device

        # using a ResNet trained on ImageNet
        self.resnet = resnet50(weights="IMAGENET1K_V2").eval()
        self.resnet = torch.nn.Sequential(*(list(self.resnet.children())[:-1])).to(device)  # remove ResNet layer
        self.resnet_preprocessor = ResNet50_Weights.DEFAULT.transforms().to(device)
        self.video_extraction_framerate = video_extraction_framerate  # setting the fps at which the video is processed
        self.positional_encoder = PositionalEncoding(resnet_output_dimension).to(device)

    def forward(self, video: mpe.VideoFileClip):
        embeddings = []
        for i in range(0, 30 * self.video_extraction_framerate):
            i = video.get_frame(i)  # get frame as numpy array
            i = Image.fromarray(i)  # create PIL image from numpy array
            i = self.resnet_preprocessor(i)  # preprocess image
            i = i.to(self.device)
            i = i.unsqueeze(0)  # adding a batch dimension
            i = self.resnet(i).squeeze()  # ResNet forward pass
            i = i.squeeze()
            embeddings.append(i)  # collect embeddings

        embeddings = torch.stack(embeddings)  # concatenate all frame embeddings into one video embedding
        embeddings = embeddings.unsqueeze(1)
        embeddings = self.positional_encoder(embeddings)  # apply positional encoding with a sequence length of 30
        embeddings = embeddings.squeeze()
        return embeddings


# from https://pytorch.org/tutorials/beginner/transformer_tutorial.html
class PositionalEncoding(nn.Module):
    def __init__(self, d_model: int, dropout: float = 0.1, max_length: int = 5000):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        position = torch.arange(max_length).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        pe = torch.zeros(max_length, 1, d_model)
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)

    def forward(self, x: Tensor) -> Tensor:
        x = x + self.pe[:x.size(0)]
        return self.dropout(x)


def freeze_model(model: nn.Module):
    for param in model.parameters():
        param.requires_grad = False
    model.eval()


def split_dataset_randomly(dataset, validation_split: float, test_split: float, seed: int = None):
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    datapoints_validation = int(np.floor(validation_split * dataset_size))
    datapoints_testing = int(np.floor(test_split * dataset_size))

    if seed:
        np.random.seed(seed)

    np.random.shuffle(indices)  # in-place operation
    training = indices[datapoints_validation + datapoints_testing:]
    validation = indices[datapoints_validation:datapoints_testing + datapoints_validation]
    testing = indices[:datapoints_testing]

    assert len(validation) == datapoints_validation, "Validation set length incorrect"
    assert len(testing) == datapoints_testing, "Testing set length incorrect"
    assert len(training) == dataset_size - (datapoints_testing + datapoints_testing), "Training set length incorrect"
    assert not any([item in training for item in validation]), "Training and Validation overlap"
    assert not any([item in training for item in testing]), "Training and Testing overlap"
    assert not any([item in validation for item in testing]), "Validation and Testing overlap"

    return training, validation, testing


### private function from audiocraft.solver.musicgen.py => _compute_cross_entropy
def compute_cross_entropy(logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor):
    """Compute cross entropy between multi-codebook targets and model's logits.
    The cross entropy is computed per codebook to provide codebook-level cross entropy.
    Valid timesteps for each of the codebook are pulled from the mask, where invalid
    timesteps are set to 0.

    Args:
        logits (torch.Tensor): Model's logits of shape [B, K, T, card].
        targets (torch.Tensor): Target codes, of shape [B, K, T].
        mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
    Returns:
        ce (torch.Tensor): Cross entropy averaged over the codebooks
        ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
    """
    B, K, T = targets.shape
    assert logits.shape[:-1] == targets.shape
    assert mask.shape == targets.shape
    ce = torch.zeros([], device=targets.device)
    ce_per_codebook = []
    for k in range(K):
        logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1))  # [B x T, card]
        targets_k = targets[:, k, ...].contiguous().view(-1)  # [B x T]
        mask_k = mask[:, k, ...].contiguous().view(-1)  # [B x T]
        ce_targets = targets_k[mask_k]
        ce_logits = logits_k[mask_k]
        q_ce = F.cross_entropy(ce_logits, ce_targets)
        ce += q_ce
        ce_per_codebook.append(q_ce.detach())
    # average cross entropy across codebooks
    ce = ce / K
    return ce, ce_per_codebook


def generate_audio_codes(audio_paths: [str],
                         audiocraft_compression_model: torch.nn.Module,
                         device: str) -> torch.Tensor:
    audio_duration = 30
    encodec_sample_rate = audiocraft_compression_model.sample_rate

    torch_audios = []
    for audio_path in audio_paths:
        wav, original_sample_rate = torchaudio.load(audio_path)  # load audio from file
        wav = torchaudio.functional.resample(wav, original_sample_rate,
                                             encodec_sample_rate)  # cast audio to model sample rate
        wav = wav[:, :encodec_sample_rate * audio_duration]  # enforce an exact audio length of 30 seconds

        assert len(wav.shape) == 2, f"audio data is not of shape [channels, duration]"
        assert wav.shape[0] == 2, "audio data should be in stereo, but has not 2 channels"

        torch_audios.append(wav)

    torch_audios = torch.stack(torch_audios)
    torch_audios = torch_audios.to(device)

    with torch.no_grad():
        gen_audio = audiocraft_compression_model.encode(torch_audios)

    codes, scale = gen_audio
    assert scale is None

    return codes


def create_condition_tensors(
        video_embeddings: torch.Tensor,
        batch_size: int,
        video_extraction_framerate: int,
        device: str
):
    # model T5 mask
    mask = torch.ones((batch_size, video_extraction_framerate * 30), dtype=torch.int).to(device)

    condition_tensors = {
        'description': (video_embeddings, mask)
    }
    return condition_tensors


def get_current_timestamp():
    return strftime("%Y_%m_%d___%H_%M_%S")


def configure_logging(output_dir: str, filename: str, log_level):
    # create logs folder, if not existing
    os.makedirs(output_dir, exist_ok=True)
    level = getattr(logging, log_level)
    file_path = output_dir + "/" + filename
    logging.basicConfig(filename=file_path, encoding='utf-8', level=level)
    logger = logging.getLogger()
    # only add a StreamHandler if it is not present yet
    if len(logger.handlers) <= 1:
        logger.addHandler(logging.StreamHandler())