File size: 1,787 Bytes
77ed0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
library_name: peft
tags:
- trl
- kto
- generated_from_trainer
base_model: HuggingFaceH4/zephyr-7b-beta
model-index:
- name: WeniGPT-Agents-Zephyr-1.0.17-KTO
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# WeniGPT-Agents-Zephyr-1.0.17-KTO

This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3619
- Eval/rewards/chosen: 1.7854
- Eval/logps/chosen: -265.8084
- Eval/rewards/rejected: -3.3369
- Eval/logps/rejected: -297.7391
- Eval/rewards/margins: 5.1223
- Eval/kl: 3.9467

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 145
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |        |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4039        | 0.34  | 50   | 0.3767          | 0.7345 |
| 0.302         | 0.68  | 100  | 0.3619          | 3.9467 |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.1
- Pytorch 2.1.0+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2