metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- audio-classification
- hubert
- esc50
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: hubert-esc50-finetuned
results: []
hubert-esc50-finetuned
This model is a fine-tuned version of facebook/hubert-base-ls960 on the ESC-50 dataset. It achieves the following results on the evaluation set:
- Loss: 1.0816
- Accuracy: 0.8325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.5937 | 1.0 | 200 | 3.4961 | 0.1 |
3.1597 | 2.0 | 400 | 3.1798 | 0.1325 |
2.8922 | 3.0 | 600 | 2.8387 | 0.2025 |
2.6376 | 4.0 | 800 | 2.5594 | 0.285 |
2.1292 | 5.0 | 1000 | 2.3671 | 0.35 |
2.1607 | 6.0 | 1200 | 2.0533 | 0.4225 |
1.7886 | 7.0 | 1400 | 1.8790 | 0.42 |
1.626 | 8.0 | 1600 | 1.7147 | 0.52 |
1.5246 | 9.0 | 1800 | 1.6021 | 0.545 |
0.9318 | 10.0 | 2000 | 1.4441 | 0.5825 |
0.9384 | 11.0 | 2200 | 1.2180 | 0.67 |
0.9081 | 12.0 | 2400 | 1.1540 | 0.7075 |
0.803 | 13.0 | 2600 | 1.1317 | 0.72 |
0.4613 | 14.0 | 2800 | 1.0722 | 0.74 |
0.4389 | 15.0 | 3000 | 1.1055 | 0.73 |
0.4175 | 16.0 | 3200 | 1.0409 | 0.725 |
0.2977 | 17.0 | 3400 | 0.9540 | 0.78 |
0.3455 | 18.0 | 3600 | 0.9743 | 0.805 |
0.2237 | 19.0 | 3800 | 1.0938 | 0.7775 |
0.154 | 20.0 | 4000 | 1.0646 | 0.8 |
0.0966 | 21.0 | 4200 | 1.0621 | 0.7875 |
0.172 | 22.0 | 4400 | 1.1815 | 0.7725 |
0.055 | 23.0 | 4600 | 1.1436 | 0.79 |
0.1465 | 24.0 | 4800 | 1.1070 | 0.81 |
0.0458 | 25.0 | 5000 | 1.1053 | 0.82 |
0.0137 | 26.0 | 5200 | 1.0798 | 0.815 |
0.0449 | 27.0 | 5400 | 1.1108 | 0.8225 |
0.0231 | 28.0 | 5600 | 1.1113 | 0.83 |
0.0218 | 29.0 | 5800 | 1.0896 | 0.83 |
0.047 | 30.0 | 6000 | 1.0816 | 0.8325 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.1