File size: 2,464 Bytes
b4da537 ba33264 b4da537 ba33264 1b85e66 895295d ba33264 b4da537 ba33264 26d4cd1 ba33264 26d4cd1 ba33264 44b4eae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
from transformers import AutoModel, AutoConfig, PreTrainedModel
import torch
class MultiLabelAttention(torch.nn.Module):
def __init__(self, D_in, num_labels):
super().__init__()
self.A = torch.nn.Parameter(torch.empty(D_in, num_labels))
torch.nn.init.uniform_(self.A, -0.1, 0.1)
def forward(self, x):
attention_weights = torch.nn.functional.softmax(
torch.tanh(torch.matmul(x, self.A)), dim=1
)
return torch.matmul(torch.transpose(attention_weights, 2, 1), x)
class BertMesh(PreTrainedModel):
def __init__(
self,
config,
pretrained_model="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract",
num_labels=28761,
hidden_size=512,
dropout=0,
multilabel_attention=False,
):
super().__init__(config=AutoConfig.from_pretrained(pretrained_model))
self.config.auto_map = {"AutoModel": "transformers_model.BertMesh"}
self.pretrained_model = pretrained_model
self.num_labels = num_labels
self.hidden_size = hidden_size
self.dropout = dropout
self.multilabel_attention = multilabel_attention
self.bert = AutoModel.from_pretrained(pretrained_model) # 768
self.multilabel_attention_layer = MultiLabelAttention(
768, num_labels
) # num_labels, 768
self.linear_1 = torch.nn.Linear(768, hidden_size) # num_labels, 512
self.linear_2 = torch.nn.Linear(hidden_size, 1) # num_labels, 1
self.linear_out = torch.nn.Linear(hidden_size, num_labels)
self.dropout_layer = torch.nn.Dropout(self.dropout)
def forward(self, input_ids, token_type_ids=None, attention_mask=None):
input_ids = torch.tensor(input_ids)
if self.multilabel_attention:
hidden_states = self.bert(input_ids=input_ids)[0]
attention_outs = self.multilabel_attention_layer(hidden_states)
outs = torch.nn.functional.relu(self.linear_1(attention_outs))
outs = self.dropout_layer(outs)
outs = torch.sigmoid(self.linear_2(outs))
outs = torch.flatten(outs, start_dim=1)
else:
cls = self.bert(input_ids=inputs)[1]
outs = torch.nn.functional.relu(self.linear_1(cls))
outs = self.dropout_layer(outs)
outs = torch.sigmoid(self.linear_out(outs))
return outs
def _init_weights(self, module):
pass
|