File size: 26,904 Bytes
904ef7d b4991f6 904ef7d 6875ba9 904ef7d 1e9f296 904ef7d 1e9f296 904ef7d a64a526 a0c4308 a64a526 904ef7d 30e1aa8 904ef7d f6e1b58 a0c4308 f6e1b58 904ef7d 30e1aa8 904ef7d 1e9f296 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import os
import math
import cv2
import trimesh
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import mcubes
import raymarching
from .utils import custom_meshgrid, safe_normalize
def sample_pdf(bins, weights, n_samples, det=False):
# This implementation is from NeRF
# bins: [B, T], old_z_vals
# weights: [B, T - 1], bin weights.
# return: [B, n_samples], new_z_vals
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
# Take uniform samples
if det:
u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples).to(weights.device)
u = u.expand(list(cdf.shape[:-1]) + [n_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [n_samples]).to(weights.device)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds - 1), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (B, n_samples, 2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[..., 1] - cdf_g[..., 0])
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
return samples
def plot_pointcloud(pc, color=None):
# pc: [N, 3]
# color: [N, 3/4]
print('[visualize points]', pc.shape, pc.dtype, pc.min(0), pc.max(0))
pc = trimesh.PointCloud(pc, color)
# axis
axes = trimesh.creation.axis(axis_length=4)
# sphere
sphere = trimesh.creation.icosphere(radius=1)
trimesh.Scene([pc, axes, sphere]).show()
class NeRFRenderer(nn.Module):
def __init__(self, opt):
super().__init__()
self.opt = opt
self.bound = opt.bound
self.cascade = 1 + math.ceil(math.log2(opt.bound))
self.grid_size = 128
self.cuda_ray = opt.cuda_ray
self.min_near = opt.min_near
self.density_thresh = opt.density_thresh
self.bg_radius = opt.bg_radius
# prepare aabb with a 6D tensor (xmin, ymin, zmin, xmax, ymax, zmax)
# NOTE: aabb (can be rectangular) is only used to generate points, we still rely on bound (always cubic) to calculate density grid and hashing.
aabb_train = torch.FloatTensor([-opt.bound, -opt.bound, -opt.bound, opt.bound, opt.bound, opt.bound])
aabb_infer = aabb_train.clone()
self.register_buffer('aabb_train', aabb_train)
self.register_buffer('aabb_infer', aabb_infer)
# extra state for cuda raymarching
if self.cuda_ray:
# density grid
density_grid = torch.zeros([self.cascade, self.grid_size ** 3]) # [CAS, H * H * H]
density_bitfield = torch.zeros(self.cascade * self.grid_size ** 3 // 8, dtype=torch.uint8) # [CAS * H * H * H // 8]
self.register_buffer('density_grid', density_grid)
self.register_buffer('density_bitfield', density_bitfield)
self.mean_density = 0
self.iter_density = 0
# step counter
step_counter = torch.zeros(16, 2, dtype=torch.int32) # 16 is hardcoded for averaging...
self.register_buffer('step_counter', step_counter)
self.mean_count = 0
self.local_step = 0
def forward(self, x, d):
raise NotImplementedError()
def density(self, x):
raise NotImplementedError()
def color(self, x, d, mask=None, **kwargs):
raise NotImplementedError()
def reset_extra_state(self):
if not self.cuda_ray:
return
# density grid
self.density_grid.zero_()
self.mean_density = 0
self.iter_density = 0
# step counter
self.step_counter.zero_()
self.mean_count = 0
self.local_step = 0
@torch.no_grad()
def export_mesh(self, path, resolution=None, S=128):
if resolution is None:
resolution = self.grid_size
density_thresh = min(self.mean_density, self.density_thresh)
sigmas = np.zeros([resolution, resolution, resolution], dtype=np.float32)
# query
X = torch.linspace(-1, 1, resolution).split(S)
Y = torch.linspace(-1, 1, resolution).split(S)
Z = torch.linspace(-1, 1, resolution).split(S)
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = custom_meshgrid(xs, ys, zs)
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [S, 3]
val = self.density(pts.to(self.density_bitfield.device))
sigmas[xi * S: xi * S + len(xs), yi * S: yi * S + len(ys), zi * S: zi * S + len(zs)] = val['sigma'].reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy() # [S, 1] --> [x, y, z]
vertices, triangles = mcubes.marching_cubes(sigmas, density_thresh)
vertices = vertices / (resolution - 1.0) * 2 - 1
vertices = vertices.astype(np.float32)
triangles = triangles.astype(np.int32)
v = torch.from_numpy(vertices).to(self.density_bitfield.device)
f = torch.from_numpy(triangles).int().to(self.density_bitfield.device)
# mesh = trimesh.Trimesh(vertices, triangles, process=False) # important, process=True leads to seg fault...
# mesh.export(os.path.join(path, f'mesh.ply'))
# texture?
def _export(v, f, h0=2048, w0=2048, ssaa=1, name=''):
# v, f: torch Tensor
device = v.device
v_np = v.cpu().numpy() # [N, 3]
f_np = f.cpu().numpy() # [M, 3]
print(f'[INFO] running xatlas to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
# unwrap uvs
import xatlas
import nvdiffrast.torch as dr
from sklearn.neighbors import NearestNeighbors
from scipy.ndimage import binary_dilation, binary_erosion
glctx = dr.RasterizeCudaContext()
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
chart_options.max_iterations = 0 # disable merge_chart for faster unwrap...
atlas.generate(chart_options=chart_options)
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
# vmapping, ft_np, vt_np = xatlas.parametrize(v_np, f_np) # [N], [M, 3], [N, 2]
vt = torch.from_numpy(vt_np.astype(np.float32)).float().to(device)
ft = torch.from_numpy(ft_np.astype(np.int64)).int().to(device)
# render uv maps
uv = vt * 2.0 - 1.0 # uvs to range [-1, 1]
uv = torch.cat((uv, torch.zeros_like(uv[..., :1]), torch.ones_like(uv[..., :1])), dim=-1) # [N, 4]
if ssaa > 1:
h = int(h0 * ssaa)
w = int(w0 * ssaa)
else:
h, w = h0, w0
rast, _ = dr.rasterize(glctx, uv.unsqueeze(0), ft, (h, w)) # [1, h, w, 4]
xyzs, _ = dr.interpolate(v.unsqueeze(0), rast, f) # [1, h, w, 3]
mask, _ = dr.interpolate(torch.ones_like(v[:, :1]).unsqueeze(0), rast, f) # [1, h, w, 1]
# masked query
xyzs = xyzs.view(-1, 3)
mask = (mask > 0).view(-1)
sigmas = torch.zeros(h * w, device=device, dtype=torch.float32)
feats = torch.zeros(h * w, 3, device=device, dtype=torch.float32)
if mask.any():
xyzs = xyzs[mask] # [M, 3]
# batched inference to avoid OOM
all_sigmas = []
all_feats = []
head = 0
while head < xyzs.shape[0]:
tail = min(head + 640000, xyzs.shape[0])
results_ = self.density(xyzs[head:tail])
all_sigmas.append(results_['sigma'].float())
all_feats.append(results_['albedo'].float())
head += 640000
sigmas[mask] = torch.cat(all_sigmas, dim=0)
feats[mask] = torch.cat(all_feats, dim=0)
sigmas = sigmas.view(h, w, 1)
feats = feats.view(h, w, -1)
mask = mask.view(h, w)
### alpha mask
# deltas = 2 * np.sqrt(3) / 1024
# alphas = 1 - torch.exp(-sigmas * deltas)
# alphas_mask = alphas > 0.5
# feats = feats * alphas_mask
# quantize [0.0, 1.0] to [0, 255]
feats = feats.cpu().numpy()
feats = (feats * 255).astype(np.uint8)
# alphas = alphas.cpu().numpy()
# alphas = (alphas * 255).astype(np.uint8)
### NN search as an antialiasing ...
mask = mask.cpu().numpy()
inpaint_region = binary_dilation(mask, iterations=3)
inpaint_region[mask] = 0
search_region = mask.copy()
not_search_region = binary_erosion(search_region, iterations=2)
search_region[not_search_region] = 0
search_coords = np.stack(np.nonzero(search_region), axis=-1)
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
knn = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(search_coords)
_, indices = knn.kneighbors(inpaint_coords)
feats[tuple(inpaint_coords.T)] = feats[tuple(search_coords[indices[:, 0]].T)]
# do ssaa after the NN search, in numpy
feats = cv2.cvtColor(feats, cv2.COLOR_RGB2BGR)
if ssaa > 1:
# alphas = cv2.resize(alphas, (w0, h0), interpolation=cv2.INTER_NEAREST)
feats = cv2.resize(feats, (w0, h0), interpolation=cv2.INTER_LINEAR)
# cv2.imwrite(os.path.join(path, f'alpha.png'), alphas)
cv2.imwrite(os.path.join(path, f'{name}albedo.png'), feats)
# save obj (v, vt, f /)
obj_file = os.path.join(path, f'{name}mesh.obj')
mtl_file = os.path.join(path, f'{name}mesh.mtl')
print(f'[INFO] writing obj mesh to {obj_file}')
with open(obj_file, "w") as fp:
fp.write(f'mtllib {name}mesh.mtl \n')
print(f'[INFO] writing vertices {v_np.shape}')
for v in v_np:
fp.write(f'v {v[0]} {v[1]} {v[2]} \n')
print(f'[INFO] writing vertices texture coords {vt_np.shape}')
for v in vt_np:
fp.write(f'vt {v[0]} {1 - v[1]} \n')
print(f'[INFO] writing faces {f_np.shape}')
fp.write(f'usemtl mat0 \n')
for i in range(len(f_np)):
fp.write(f"f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1} {f_np[i, 1] + 1}/{ft_np[i, 1] + 1} {f_np[i, 2] + 1}/{ft_np[i, 2] + 1} \n")
with open(mtl_file, "w") as fp:
fp.write(f'newmtl mat0 \n')
fp.write(f'Ka 1.000000 1.000000 1.000000 \n')
fp.write(f'Kd 1.000000 1.000000 1.000000 \n')
fp.write(f'Ks 0.000000 0.000000 0.000000 \n')
fp.write(f'Tr 1.000000 \n')
fp.write(f'illum 1 \n')
fp.write(f'Ns 0.000000 \n')
fp.write(f'map_Kd {name}albedo.png \n')
os.system(f"blender -b -P obj2glb.py")
_export(v, f)
def run(self, rays_o, rays_d, num_steps=128, upsample_steps=128, light_d=None, ambient_ratio=1.0, shading='albedo', bg_color=None, perturb=False, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# bg_color: [BN, 3] in range [0, 1]
# return: image: [B, N, 3], depth: [B, N]
prefix = rays_o.shape[:-1]
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
N = rays_o.shape[0] # N = B * N, in fact
device = rays_o.device
results = {}
# choose aabb
aabb = self.aabb_train if self.training else self.aabb_infer
# sample steps
nears, fars = raymarching.near_far_from_aabb(rays_o, rays_d, aabb, self.min_near)
nears.unsqueeze_(-1)
fars.unsqueeze_(-1)
# random sample light_d if not provided
if light_d is None:
# gaussian noise around the ray origin, so the light always face the view dir (avoid dark face)
light_d = (rays_o[0] + torch.randn(3, device=device, dtype=torch.float))
light_d = safe_normalize(light_d)
#print(f'nears = {nears.min().item()} ~ {nears.max().item()}, fars = {fars.min().item()} ~ {fars.max().item()}')
z_vals = torch.linspace(0.0, 1.0, num_steps, device=device).unsqueeze(0) # [1, T]
z_vals = z_vals.expand((N, num_steps)) # [N, T]
z_vals = nears + (fars - nears) * z_vals # [N, T], in [nears, fars]
# perturb z_vals
sample_dist = (fars - nears) / num_steps
if perturb:
z_vals = z_vals + (torch.rand(z_vals.shape, device=device) - 0.5) * sample_dist
#z_vals = z_vals.clamp(nears, fars) # avoid out of bounds xyzs.
# generate xyzs
xyzs = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * z_vals.unsqueeze(-1) # [N, 1, 3] * [N, T, 1] -> [N, T, 3]
xyzs = torch.min(torch.max(xyzs, aabb[:3]), aabb[3:]) # a manual clip.
#plot_pointcloud(xyzs.reshape(-1, 3).detach().cpu().numpy())
# query SDF and RGB
density_outputs = self.density(xyzs.reshape(-1, 3))
#sigmas = density_outputs['sigma'].view(N, num_steps) # [N, T]
for k, v in density_outputs.items():
density_outputs[k] = v.view(N, num_steps, -1)
# upsample z_vals (nerf-like)
if upsample_steps > 0:
with torch.no_grad():
deltas = z_vals[..., 1:] - z_vals[..., :-1] # [N, T-1]
deltas = torch.cat([deltas, sample_dist * torch.ones_like(deltas[..., :1])], dim=-1)
alphas = 1 - torch.exp(-deltas * density_outputs['sigma'].squeeze(-1)) # [N, T]
alphas_shifted = torch.cat([torch.ones_like(alphas[..., :1]), 1 - alphas + 1e-15], dim=-1) # [N, T+1]
weights = alphas * torch.cumprod(alphas_shifted, dim=-1)[..., :-1] # [N, T]
# sample new z_vals
z_vals_mid = (z_vals[..., :-1] + 0.5 * deltas[..., :-1]) # [N, T-1]
new_z_vals = sample_pdf(z_vals_mid, weights[:, 1:-1], upsample_steps, det=not self.training).detach() # [N, t]
new_xyzs = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * new_z_vals.unsqueeze(-1) # [N, 1, 3] * [N, t, 1] -> [N, t, 3]
new_xyzs = torch.min(torch.max(new_xyzs, aabb[:3]), aabb[3:]) # a manual clip.
# only forward new points to save computation
new_density_outputs = self.density(new_xyzs.reshape(-1, 3))
#new_sigmas = new_density_outputs['sigma'].view(N, upsample_steps) # [N, t]
for k, v in new_density_outputs.items():
new_density_outputs[k] = v.view(N, upsample_steps, -1)
# re-order
z_vals = torch.cat([z_vals, new_z_vals], dim=1) # [N, T+t]
z_vals, z_index = torch.sort(z_vals, dim=1)
xyzs = torch.cat([xyzs, new_xyzs], dim=1) # [N, T+t, 3]
xyzs = torch.gather(xyzs, dim=1, index=z_index.unsqueeze(-1).expand_as(xyzs))
for k in density_outputs:
tmp_output = torch.cat([density_outputs[k], new_density_outputs[k]], dim=1)
density_outputs[k] = torch.gather(tmp_output, dim=1, index=z_index.unsqueeze(-1).expand_as(tmp_output))
deltas = z_vals[..., 1:] - z_vals[..., :-1] # [N, T+t-1]
deltas = torch.cat([deltas, sample_dist * torch.ones_like(deltas[..., :1])], dim=-1)
alphas = 1 - torch.exp(-deltas * density_outputs['sigma'].squeeze(-1)) # [N, T+t]
alphas_shifted = torch.cat([torch.ones_like(alphas[..., :1]), 1 - alphas + 1e-15], dim=-1) # [N, T+t+1]
weights = alphas * torch.cumprod(alphas_shifted, dim=-1)[..., :-1] # [N, T+t]
dirs = rays_d.view(-1, 1, 3).expand_as(xyzs)
for k, v in density_outputs.items():
density_outputs[k] = v.view(-1, v.shape[-1])
sigmas, rgbs, normals = self(xyzs.reshape(-1, 3), dirs.reshape(-1, 3), light_d, ratio=ambient_ratio, shading=shading)
rgbs = rgbs.view(N, -1, 3) # [N, T+t, 3]
#print(xyzs.shape, 'valid_rgb:', mask.sum().item())
# orientation loss
if normals is not None:
normals = normals.view(N, -1, 3)
# print(weights.shape, normals.shape, dirs.shape)
loss_orient = weights.detach() * (normals * dirs).sum(-1).clamp(min=0) ** 2
results['loss_orient'] = loss_orient.mean()
# calculate weight_sum (mask)
weights_sum = weights.sum(dim=-1) # [N]
# calculate depth
ori_z_vals = ((z_vals - nears) / (fars - nears)).clamp(0, 1)
depth = torch.sum(weights * ori_z_vals, dim=-1)
# calculate color
image = torch.sum(weights.unsqueeze(-1) * rgbs, dim=-2) # [N, 3], in [0, 1]
# mix background color
if self.bg_radius > 0:
# use the bg model to calculate bg_color
# sph = raymarching.sph_from_ray(rays_o, rays_d, self.bg_radius) # [N, 2] in [-1, 1]
bg_color = self.background(rays_d.reshape(-1, 3)) # [N, 3]
elif bg_color is None:
bg_color = 1
image = image + (1 - weights_sum).unsqueeze(-1) * bg_color
image = image.view(*prefix, 3)
depth = depth.view(*prefix)
mask = (nears < fars).reshape(*prefix)
results['image'] = image
results['depth'] = depth
results['weights_sum'] = weights_sum
results['mask'] = mask
return results
def run_cuda(self, rays_o, rays_d, dt_gamma=0, light_d=None, ambient_ratio=1.0, shading='albedo', bg_color=None, perturb=False, force_all_rays=False, max_steps=1024, T_thresh=1e-4, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# return: image: [B, N, 3], depth: [B, N]
prefix = rays_o.shape[:-1]
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
N = rays_o.shape[0] # N = B * N, in fact
device = rays_o.device
# pre-calculate near far
nears, fars = raymarching.near_far_from_aabb(rays_o, rays_d, self.aabb_train if self.training else self.aabb_infer)
# random sample light_d if not provided
if light_d is None:
# gaussian noise around the ray origin, so the light always face the view dir (avoid dark face)
light_d = (rays_o[0] + torch.randn(3, device=device, dtype=torch.float))
light_d = safe_normalize(light_d)
results = {}
if self.training:
# setup counter
counter = self.step_counter[self.local_step % 16]
counter.zero_() # set to 0
self.local_step += 1
xyzs, dirs, deltas, rays = raymarching.march_rays_train(rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, counter, self.mean_count, perturb, 128, force_all_rays, dt_gamma, max_steps)
#plot_pointcloud(xyzs.reshape(-1, 3).detach().cpu().numpy())
sigmas, rgbs, normals = self(xyzs, dirs, light_d, ratio=ambient_ratio, shading=shading)
#print(f'valid RGB query ratio: {mask.sum().item() / mask.shape[0]} (total = {mask.sum().item()})')
weights_sum, depth, image = raymarching.composite_rays_train(sigmas, rgbs, deltas, rays, T_thresh)
# orientation loss
if normals is not None:
weights = 1 - torch.exp(-sigmas)
loss_orient = weights.detach() * (normals * dirs).sum(-1).clamp(min=0) ** 2
results['loss_orient'] = loss_orient.mean()
else:
# allocate outputs
dtype = torch.float32
weights_sum = torch.zeros(N, dtype=dtype, device=device)
depth = torch.zeros(N, dtype=dtype, device=device)
image = torch.zeros(N, 3, dtype=dtype, device=device)
n_alive = N
rays_alive = torch.arange(n_alive, dtype=torch.int32, device=device) # [N]
rays_t = nears.clone() # [N]
step = 0
while step < max_steps: # hard coded max step
# count alive rays
n_alive = rays_alive.shape[0]
# exit loop
if n_alive <= 0:
break
# decide compact_steps
n_step = max(min(N // n_alive, 8), 1)
xyzs, dirs, deltas = raymarching.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, 128, perturb if step == 0 else False, dt_gamma, max_steps)
sigmas, rgbs, normals = self(xyzs, dirs, light_d, ratio=ambient_ratio, shading=shading)
raymarching.composite_rays(n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image, T_thresh)
rays_alive = rays_alive[rays_alive >= 0]
#print(f'step = {step}, n_step = {n_step}, n_alive = {n_alive}, xyzs: {xyzs.shape}')
step += n_step
# mix background color
if self.bg_radius > 0:
# use the bg model to calculate bg_color
# sph = raymarching.sph_from_ray(rays_o, rays_d, self.bg_radius) # [N, 2] in [-1, 1]
bg_color = self.background(rays_d) # [N, 3]
elif bg_color is None:
bg_color = 1
image = image + (1 - weights_sum).unsqueeze(-1) * bg_color
image = image.view(*prefix, 3)
depth = torch.clamp(depth - nears, min=0) / (fars - nears)
depth = depth.view(*prefix)
weights_sum = weights_sum.reshape(*prefix)
mask = (nears < fars).reshape(*prefix)
results['image'] = image
results['depth'] = depth
results['weights_sum'] = weights_sum
results['mask'] = mask
return results
@torch.no_grad()
def update_extra_state(self, decay=0.95, S=128):
# call before each epoch to update extra states.
if not self.cuda_ray:
return
### update density grid
tmp_grid = - torch.ones_like(self.density_grid)
X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
for xs in X:
for ys in Y:
for zs in Z:
# construct points
xx, yy, zz = custom_meshgrid(xs, ys, zs)
coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
indices = raymarching.morton3D(coords).long() # [N]
xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]
# cascading
for cas in range(self.cascade):
bound = min(2 ** cas, self.bound)
half_grid_size = bound / self.grid_size
# scale to current cascade's resolution
cas_xyzs = xyzs * (bound - half_grid_size)
# add noise in [-hgs, hgs]
cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
# query density
sigmas = self.density(cas_xyzs)['sigma'].reshape(-1).detach()
# assign
tmp_grid[cas, indices] = sigmas
# ema update
valid_mask = self.density_grid >= 0
self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])
self.mean_density = torch.mean(self.density_grid[valid_mask]).item()
self.iter_density += 1
# convert to bitfield
density_thresh = min(self.mean_density, self.density_thresh)
self.density_bitfield = raymarching.packbits(self.density_grid, density_thresh, self.density_bitfield)
### update step counter
total_step = min(16, self.local_step)
if total_step > 0:
self.mean_count = int(self.step_counter[:total_step, 0].sum().item() / total_step)
self.local_step = 0
# print(f'[density grid] min={self.density_grid.min().item():.4f}, max={self.density_grid.max().item():.4f}, mean={self.mean_density:.4f}, occ_rate={(self.density_grid > density_thresh).sum() / (128**3 * self.cascade):.3f} | [step counter] mean={self.mean_count}')
def render(self, rays_o, rays_d, staged=False, max_ray_batch=4096, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# return: pred_rgb: [B, N, 3]
if self.cuda_ray:
_run = self.run_cuda
else:
_run = self.run
B, N = rays_o.shape[:2]
device = rays_o.device
# never stage when cuda_ray
if staged and not self.cuda_ray:
depth = torch.empty((B, N), device=device)
image = torch.empty((B, N, 3), device=device)
weights_sum = torch.empty((B, N), device=device)
for b in range(B):
head = 0
while head < N:
tail = min(head + max_ray_batch, N)
results_ = _run(rays_o[b:b+1, head:tail], rays_d[b:b+1, head:tail], **kwargs)
depth[b:b+1, head:tail] = results_['depth']
weights_sum[b:b+1, head:tail] = results_['weights_sum']
image[b:b+1, head:tail] = results_['image']
head += max_ray_batch
results = {}
results['depth'] = depth
results['image'] = image
results['weights_sum'] = weights_sum
else:
results = _run(rays_o, rays_d, **kwargs)
return results
|