File size: 26,850 Bytes
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4991f6
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6875ba9
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64a526
 
 
a0c4308
a64a526
 
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e1aa8
 
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e1b58
 
 
a0c4308
f6e1b58
 
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e1aa8
 
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import os
import math
import cv2
import trimesh
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

import mcubes
import raymarching
from .utils import custom_meshgrid, safe_normalize

def sample_pdf(bins, weights, n_samples, det=False):
    # This implementation is from NeRF
    # bins: [B, T], old_z_vals
    # weights: [B, T - 1], bin weights.
    # return: [B, n_samples], new_z_vals

    # Get pdf
    weights = weights + 1e-5  # prevent nans
    pdf = weights / torch.sum(weights, -1, keepdim=True)
    cdf = torch.cumsum(pdf, -1)
    cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
    # Take uniform samples
    if det:
        u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples).to(weights.device)
        u = u.expand(list(cdf.shape[:-1]) + [n_samples])
    else:
        u = torch.rand(list(cdf.shape[:-1]) + [n_samples]).to(weights.device)

    # Invert CDF
    u = u.contiguous()
    inds = torch.searchsorted(cdf, u, right=True)
    below = torch.max(torch.zeros_like(inds - 1), inds - 1)
    above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
    inds_g = torch.stack([below, above], -1)  # (B, n_samples, 2)

    matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
    cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
    bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)

    denom = (cdf_g[..., 1] - cdf_g[..., 0])
    denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
    t = (u - cdf_g[..., 0]) / denom
    samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])

    return samples


def plot_pointcloud(pc, color=None):
    # pc: [N, 3]
    # color: [N, 3/4]
    print('[visualize points]', pc.shape, pc.dtype, pc.min(0), pc.max(0))
    pc = trimesh.PointCloud(pc, color)
    # axis
    axes = trimesh.creation.axis(axis_length=4)
    # sphere
    sphere = trimesh.creation.icosphere(radius=1)
    trimesh.Scene([pc, axes, sphere]).show()


class NeRFRenderer(nn.Module):
    def __init__(self, opt):
        super().__init__()

        self.opt = opt
        self.bound = opt.bound
        self.cascade = 1 + math.ceil(math.log2(opt.bound))
        self.grid_size = 128
        self.cuda_ray = opt.cuda_ray
        self.min_near = opt.min_near
        self.density_thresh = opt.density_thresh
        self.bg_radius = opt.bg_radius

        # prepare aabb with a 6D tensor (xmin, ymin, zmin, xmax, ymax, zmax)
        # NOTE: aabb (can be rectangular) is only used to generate points, we still rely on bound (always cubic) to calculate density grid and hashing.
        aabb_train = torch.FloatTensor([-opt.bound, -opt.bound, -opt.bound, opt.bound, opt.bound, opt.bound])
        aabb_infer = aabb_train.clone()
        self.register_buffer('aabb_train', aabb_train)
        self.register_buffer('aabb_infer', aabb_infer)

        # extra state for cuda raymarching
        if self.cuda_ray:
            # density grid
            density_grid = torch.zeros([self.cascade, self.grid_size ** 3]) # [CAS, H * H * H]
            density_bitfield = torch.zeros(self.cascade * self.grid_size ** 3 // 8, dtype=torch.uint8) # [CAS * H * H * H // 8]
            self.register_buffer('density_grid', density_grid)
            self.register_buffer('density_bitfield', density_bitfield)
            self.mean_density = 0
            self.iter_density = 0
            # step counter
            step_counter = torch.zeros(16, 2, dtype=torch.int32) # 16 is hardcoded for averaging...
            self.register_buffer('step_counter', step_counter)
            self.mean_count = 0
            self.local_step = 0

    
    def forward(self, x, d):
        raise NotImplementedError()

    def density(self, x):
        raise NotImplementedError()

    def color(self, x, d, mask=None, **kwargs):
        raise NotImplementedError()

    def reset_extra_state(self):
        if not self.cuda_ray:
            return 
        # density grid
        self.density_grid.zero_()
        self.mean_density = 0
        self.iter_density = 0
        # step counter
        self.step_counter.zero_()
        self.mean_count = 0
        self.local_step = 0

    @torch.no_grad()
    def export_mesh(self, path, resolution=None, S=128):

        if resolution is None:
            resolution = self.grid_size

        density_thresh = min(self.mean_density, self.density_thresh)

        sigmas = np.zeros([resolution, resolution, resolution], dtype=np.float32)

        # query
        X = torch.linspace(-1, 1, resolution).split(S)
        Y = torch.linspace(-1, 1, resolution).split(S)
        Z = torch.linspace(-1, 1, resolution).split(S)

        for xi, xs in enumerate(X):
            for yi, ys in enumerate(Y):
                for zi, zs in enumerate(Z):
                    xx, yy, zz = custom_meshgrid(xs, ys, zs)
                    pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [S, 3]
                    val = self.density(pts.to(self.density_bitfield.device))
                    sigmas[xi * S: xi * S + len(xs), yi * S: yi * S + len(ys), zi * S: zi * S + len(zs)] = val['sigma'].reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy() # [S, 1] --> [x, y, z]

        vertices, triangles = mcubes.marching_cubes(sigmas, density_thresh)

        vertices = vertices / (resolution - 1.0) * 2 - 1
        vertices = vertices.astype(np.float32)
        triangles = triangles.astype(np.int32)

        v = torch.from_numpy(vertices).to(self.density_bitfield.device)
        f = torch.from_numpy(triangles).int().to(self.density_bitfield.device)

        # mesh = trimesh.Trimesh(vertices, triangles, process=False) # important, process=True leads to seg fault...
        # mesh.export(os.path.join(path, f'mesh.ply'))

        # texture?
        def _export(v, f, h0=2048, w0=2048, ssaa=1, name=''):
            # v, f: torch Tensor
            device = v.device
            v_np = v.cpu().numpy() # [N, 3]
            f_np = f.cpu().numpy() # [M, 3]

            print(f'[INFO] running xatlas to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')

            # unwrap uvs
            import xatlas
            import nvdiffrast.torch as dr
            from sklearn.neighbors import NearestNeighbors
            from scipy.ndimage import binary_dilation, binary_erosion

            glctx = dr.RasterizeCudaContext()

            atlas = xatlas.Atlas()
            atlas.add_mesh(v_np, f_np)
            chart_options = xatlas.ChartOptions()
            chart_options.max_iterations = 0 # disable merge_chart for faster unwrap...
            atlas.generate(chart_options=chart_options)
            vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]

            # vmapping, ft_np, vt_np = xatlas.parametrize(v_np, f_np) # [N], [M, 3], [N, 2]

            vt = torch.from_numpy(vt_np.astype(np.float32)).float().to(device)
            ft = torch.from_numpy(ft_np.astype(np.int64)).int().to(device)

            # render uv maps
            uv = vt * 2.0 - 1.0 # uvs to range [-1, 1]
            uv = torch.cat((uv, torch.zeros_like(uv[..., :1]), torch.ones_like(uv[..., :1])), dim=-1) # [N, 4]

            if ssaa > 1:
                h = int(h0 * ssaa)
                w = int(w0 * ssaa)
            else:
                h, w = h0, w0

            rast, _ = dr.rasterize(glctx, uv.unsqueeze(0), ft, (h, w)) # [1, h, w, 4]
            xyzs, _ = dr.interpolate(v.unsqueeze(0), rast, f) # [1, h, w, 3]
            mask, _ = dr.interpolate(torch.ones_like(v[:, :1]).unsqueeze(0), rast, f) # [1, h, w, 1]

            # masked query 
            xyzs = xyzs.view(-1, 3)
            mask = (mask > 0).view(-1)
            
            sigmas = torch.zeros(h * w, device=device, dtype=torch.float32)
            feats = torch.zeros(h * w, 3, device=device, dtype=torch.float32)

            if mask.any():
                xyzs = xyzs[mask] # [M, 3]

                # batched inference to avoid OOM
                all_sigmas = []
                all_feats = []
                head = 0
                while head < xyzs.shape[0]:
                    tail = min(head + 640000, xyzs.shape[0])
                    results_ = self.density(xyzs[head:tail])
                    all_sigmas.append(results_['sigma'].float())
                    all_feats.append(results_['albedo'].float())
                    head += 640000

                sigmas[mask] = torch.cat(all_sigmas, dim=0)
                feats[mask] = torch.cat(all_feats, dim=0)
            
            sigmas = sigmas.view(h, w, 1)
            feats = feats.view(h, w, -1)
            mask = mask.view(h, w)

            ### alpha mask
            # deltas = 2 * np.sqrt(3) / 1024
            # alphas = 1 - torch.exp(-sigmas * deltas)
            # alphas_mask = alphas > 0.5
            # feats = feats * alphas_mask

            # quantize [0.0, 1.0] to [0, 255]
            feats = feats.cpu().numpy()
            feats = (feats * 255).astype(np.uint8)

            # alphas = alphas.cpu().numpy()
            # alphas = (alphas * 255).astype(np.uint8)

            ### NN search as an antialiasing ...
            mask = mask.cpu().numpy()

            inpaint_region = binary_dilation(mask, iterations=3)
            inpaint_region[mask] = 0

            search_region = mask.copy()
            not_search_region = binary_erosion(search_region, iterations=2)
            search_region[not_search_region] = 0

            search_coords = np.stack(np.nonzero(search_region), axis=-1)
            inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)

            knn = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(search_coords)
            _, indices = knn.kneighbors(inpaint_coords)

            feats[tuple(inpaint_coords.T)] = feats[tuple(search_coords[indices[:, 0]].T)]

            # do ssaa after the NN search, in numpy
            feats = cv2.cvtColor(feats, cv2.COLOR_RGB2BGR)

            if ssaa > 1:
                # alphas = cv2.resize(alphas, (w0, h0), interpolation=cv2.INTER_NEAREST)
                feats = cv2.resize(feats, (w0, h0), interpolation=cv2.INTER_LINEAR)

            # cv2.imwrite(os.path.join(path, f'alpha.png'), alphas)
            cv2.imwrite(os.path.join(path, f'{name}albedo.png'), feats)

            # save obj (v, vt, f /)
            obj_file = os.path.join(path, f'{name}mesh.obj')
            mtl_file = os.path.join(path, f'{name}mesh.mtl')

            print(f'[INFO] writing obj mesh to {obj_file}')
            with open(obj_file, "w") as fp:
                fp.write(f'mtllib {name}mesh.mtl \n')
                
                print(f'[INFO] writing vertices {v_np.shape}')
                for v in v_np:
                    fp.write(f'v {v[0]} {v[1]} {v[2]} \n')
            
                print(f'[INFO] writing vertices texture coords {vt_np.shape}')
                for v in vt_np:
                    fp.write(f'vt {v[0]} {1 - v[1]} \n') 

                print(f'[INFO] writing faces {f_np.shape}')
                fp.write(f'usemtl mat0 \n')
                for i in range(len(f_np)):
                    fp.write(f"f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1} {f_np[i, 1] + 1}/{ft_np[i, 1] + 1} {f_np[i, 2] + 1}/{ft_np[i, 2] + 1} \n")

            with open(mtl_file, "w") as fp:
                fp.write(f'newmtl mat0 \n')
                fp.write(f'Ka 1.000000 1.000000 1.000000 \n')
                fp.write(f'Kd 1.000000 1.000000 1.000000 \n')
                fp.write(f'Ks 0.000000 0.000000 0.000000 \n')
                fp.write(f'Tr 1.000000 \n')
                fp.write(f'illum 1 \n')
                fp.write(f'Ns 0.000000 \n')
                fp.write(f'map_Kd {name}albedo.png \n')

        _export(v, f)

    def run(self, rays_o, rays_d, num_steps=128, upsample_steps=128, light_d=None, ambient_ratio=1.0, shading='albedo', bg_color=None, perturb=False, **kwargs):
        # rays_o, rays_d: [B, N, 3], assumes B == 1
        # bg_color: [BN, 3] in range [0, 1]
        # return: image: [B, N, 3], depth: [B, N]

        prefix = rays_o.shape[:-1]
        rays_o = rays_o.contiguous().view(-1, 3)
        rays_d = rays_d.contiguous().view(-1, 3)

        N = rays_o.shape[0] # N = B * N, in fact
        device = rays_o.device

        results = {}

        # choose aabb
        aabb = self.aabb_train if self.training else self.aabb_infer

        # sample steps
        nears, fars = raymarching.near_far_from_aabb(rays_o, rays_d, aabb, self.min_near)
        nears.unsqueeze_(-1)
        fars.unsqueeze_(-1)

        # random sample light_d if not provided
        if light_d is None:
            # gaussian noise around the ray origin, so the light always face the view dir (avoid dark face)
            light_d = (rays_o[0] + torch.randn(3, device=device, dtype=torch.float))
            light_d = safe_normalize(light_d)

        #print(f'nears = {nears.min().item()} ~ {nears.max().item()}, fars = {fars.min().item()} ~ {fars.max().item()}')

        z_vals = torch.linspace(0.0, 1.0, num_steps, device=device).unsqueeze(0) # [1, T]
        z_vals = z_vals.expand((N, num_steps)) # [N, T]
        z_vals = nears + (fars - nears) * z_vals # [N, T], in [nears, fars]

        # perturb z_vals
        sample_dist = (fars - nears) / num_steps
        if perturb:
            z_vals = z_vals + (torch.rand(z_vals.shape, device=device) - 0.5) * sample_dist
            #z_vals = z_vals.clamp(nears, fars) # avoid out of bounds xyzs.

        # generate xyzs
        xyzs = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * z_vals.unsqueeze(-1) # [N, 1, 3] * [N, T, 1] -> [N, T, 3]
        xyzs = torch.min(torch.max(xyzs, aabb[:3]), aabb[3:]) # a manual clip.

        #plot_pointcloud(xyzs.reshape(-1, 3).detach().cpu().numpy())

        # query SDF and RGB
        density_outputs = self.density(xyzs.reshape(-1, 3))

        #sigmas = density_outputs['sigma'].view(N, num_steps) # [N, T]
        for k, v in density_outputs.items():
            density_outputs[k] = v.view(N, num_steps, -1)

        # upsample z_vals (nerf-like)
        if upsample_steps > 0:
            with torch.no_grad():

                deltas = z_vals[..., 1:] - z_vals[..., :-1] # [N, T-1]
                deltas = torch.cat([deltas, sample_dist * torch.ones_like(deltas[..., :1])], dim=-1)

                alphas = 1 - torch.exp(-deltas * density_outputs['sigma'].squeeze(-1)) # [N, T]
                alphas_shifted = torch.cat([torch.ones_like(alphas[..., :1]), 1 - alphas + 1e-15], dim=-1) # [N, T+1]
                weights = alphas * torch.cumprod(alphas_shifted, dim=-1)[..., :-1] # [N, T]

                # sample new z_vals
                z_vals_mid = (z_vals[..., :-1] + 0.5 * deltas[..., :-1]) # [N, T-1]
                new_z_vals = sample_pdf(z_vals_mid, weights[:, 1:-1], upsample_steps, det=not self.training).detach() # [N, t]

                new_xyzs = rays_o.unsqueeze(-2) + rays_d.unsqueeze(-2) * new_z_vals.unsqueeze(-1) # [N, 1, 3] * [N, t, 1] -> [N, t, 3]
                new_xyzs = torch.min(torch.max(new_xyzs, aabb[:3]), aabb[3:]) # a manual clip.

            # only forward new points to save computation
            new_density_outputs = self.density(new_xyzs.reshape(-1, 3))
            #new_sigmas = new_density_outputs['sigma'].view(N, upsample_steps) # [N, t]
            for k, v in new_density_outputs.items():
                new_density_outputs[k] = v.view(N, upsample_steps, -1)

            # re-order
            z_vals = torch.cat([z_vals, new_z_vals], dim=1) # [N, T+t]
            z_vals, z_index = torch.sort(z_vals, dim=1)

            xyzs = torch.cat([xyzs, new_xyzs], dim=1) # [N, T+t, 3]
            xyzs = torch.gather(xyzs, dim=1, index=z_index.unsqueeze(-1).expand_as(xyzs))

            for k in density_outputs:
                tmp_output = torch.cat([density_outputs[k], new_density_outputs[k]], dim=1)
                density_outputs[k] = torch.gather(tmp_output, dim=1, index=z_index.unsqueeze(-1).expand_as(tmp_output))

        deltas = z_vals[..., 1:] - z_vals[..., :-1] # [N, T+t-1]
        deltas = torch.cat([deltas, sample_dist * torch.ones_like(deltas[..., :1])], dim=-1)
        alphas = 1 - torch.exp(-deltas * density_outputs['sigma'].squeeze(-1)) # [N, T+t]
        alphas_shifted = torch.cat([torch.ones_like(alphas[..., :1]), 1 - alphas + 1e-15], dim=-1) # [N, T+t+1]
        weights = alphas * torch.cumprod(alphas_shifted, dim=-1)[..., :-1] # [N, T+t]

        dirs = rays_d.view(-1, 1, 3).expand_as(xyzs)
        for k, v in density_outputs.items():
            density_outputs[k] = v.view(-1, v.shape[-1])

        sigmas, rgbs, normals = self(xyzs.reshape(-1, 3), dirs.reshape(-1, 3), light_d, ratio=ambient_ratio, shading=shading)
        rgbs = rgbs.view(N, -1, 3) # [N, T+t, 3]

        #print(xyzs.shape, 'valid_rgb:', mask.sum().item())
        # orientation loss
        if normals is not None:
            normals = normals.view(N, -1, 3)
            # print(weights.shape, normals.shape, dirs.shape)
            loss_orient = weights.detach() * (normals * dirs).sum(-1).clamp(min=0) ** 2
            results['loss_orient'] = loss_orient.mean()

        # calculate weight_sum (mask)
        weights_sum = weights.sum(dim=-1) # [N]
        
        # calculate depth 
        ori_z_vals = ((z_vals - nears) / (fars - nears)).clamp(0, 1)
        depth = torch.sum(weights * ori_z_vals, dim=-1)

        # calculate color
        image = torch.sum(weights.unsqueeze(-1) * rgbs, dim=-2) # [N, 3], in [0, 1]

        # mix background color
        if self.bg_radius > 0:
            # use the bg model to calculate bg_color
            # sph = raymarching.sph_from_ray(rays_o, rays_d, self.bg_radius) # [N, 2] in [-1, 1]
            bg_color = self.background(rays_d.reshape(-1, 3)) # [N, 3]
        elif bg_color is None:
            bg_color = 1
            
        image = image + (1 - weights_sum).unsqueeze(-1) * bg_color

        image = image.view(*prefix, 3)
        depth = depth.view(*prefix)

        mask = (nears < fars).reshape(*prefix)

        results['image'] = image
        results['depth'] = depth
        results['weights_sum'] = weights_sum
        results['mask'] = mask

        return results


    def run_cuda(self, rays_o, rays_d, dt_gamma=0, light_d=None, ambient_ratio=1.0, shading='albedo', bg_color=None, perturb=False, force_all_rays=False, max_steps=1024, T_thresh=1e-4, **kwargs):
        # rays_o, rays_d: [B, N, 3], assumes B == 1
        # return: image: [B, N, 3], depth: [B, N]

        prefix = rays_o.shape[:-1]
        rays_o = rays_o.contiguous().view(-1, 3)
        rays_d = rays_d.contiguous().view(-1, 3)

        N = rays_o.shape[0] # N = B * N, in fact
        device = rays_o.device

        # pre-calculate near far
        nears, fars = raymarching.near_far_from_aabb(rays_o, rays_d, self.aabb_train if self.training else self.aabb_infer)

        # random sample light_d if not provided
        if light_d is None:
            # gaussian noise around the ray origin, so the light always face the view dir (avoid dark face)
            light_d = (rays_o[0] + torch.randn(3, device=device, dtype=torch.float))
            light_d = safe_normalize(light_d)

        results = {}

        if self.training:
            # setup counter
            counter = self.step_counter[self.local_step % 16]
            counter.zero_() # set to 0
            self.local_step += 1

            xyzs, dirs, deltas, rays = raymarching.march_rays_train(rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, counter, self.mean_count, perturb, 128, force_all_rays, dt_gamma, max_steps)

            #plot_pointcloud(xyzs.reshape(-1, 3).detach().cpu().numpy())
            
            sigmas, rgbs, normals = self(xyzs, dirs, light_d, ratio=ambient_ratio, shading=shading)

            #print(f'valid RGB query ratio: {mask.sum().item() / mask.shape[0]} (total = {mask.sum().item()})')

            weights_sum, depth, image = raymarching.composite_rays_train(sigmas, rgbs, deltas, rays, T_thresh)

            # orientation loss
            if normals is not None:
                weights = 1 - torch.exp(-sigmas)
                loss_orient = weights.detach() * (normals * dirs).sum(-1).clamp(min=0) ** 2
                results['loss_orient'] = loss_orient.mean()

        else:
           
            # allocate outputs 
            dtype = torch.float32
            
            weights_sum = torch.zeros(N, dtype=dtype, device=device)
            depth = torch.zeros(N, dtype=dtype, device=device)
            image = torch.zeros(N, 3, dtype=dtype, device=device)
            
            n_alive = N
            rays_alive = torch.arange(n_alive, dtype=torch.int32, device=device) # [N]
            rays_t = nears.clone() # [N]

            step = 0
            
            while step < max_steps: # hard coded max step

                # count alive rays 
                n_alive = rays_alive.shape[0]

                # exit loop
                if n_alive <= 0:
                    break

                # decide compact_steps
                n_step = max(min(N // n_alive, 8), 1)

                xyzs, dirs, deltas = raymarching.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, 128, perturb if step == 0 else False, dt_gamma, max_steps)

                sigmas, rgbs, normals = self(xyzs, dirs, light_d, ratio=ambient_ratio, shading=shading)

                raymarching.composite_rays(n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, weights_sum, depth, image, T_thresh)

                rays_alive = rays_alive[rays_alive >= 0]
                #print(f'step = {step}, n_step = {n_step}, n_alive = {n_alive}, xyzs: {xyzs.shape}')

                step += n_step

        # mix background color
        if self.bg_radius > 0:
            
            # use the bg model to calculate bg_color
            # sph = raymarching.sph_from_ray(rays_o, rays_d, self.bg_radius) # [N, 2] in [-1, 1]
            bg_color = self.background(rays_d) # [N, 3]

        elif bg_color is None:
            bg_color = 1

        image = image + (1 - weights_sum).unsqueeze(-1) * bg_color
        image = image.view(*prefix, 3)

        depth = torch.clamp(depth - nears, min=0) / (fars - nears)
        depth = depth.view(*prefix)

        weights_sum = weights_sum.reshape(*prefix)

        mask = (nears < fars).reshape(*prefix)

        results['image'] = image
        results['depth'] = depth
        results['weights_sum'] = weights_sum
        results['mask'] = mask

        return results


    @torch.no_grad()
    def update_extra_state(self, decay=0.95, S=128):
        # call before each epoch to update extra states.

        if not self.cuda_ray:
            return 
        
        ### update density grid
        tmp_grid = - torch.ones_like(self.density_grid)
        
        X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
        Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
        Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)

        for xs in X:
            for ys in Y:
                for zs in Z:
                    
                    # construct points
                    xx, yy, zz = custom_meshgrid(xs, ys, zs)
                    coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
                    indices = raymarching.morton3D(coords).long() # [N]
                    xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]

                    # cascading
                    for cas in range(self.cascade):
                        bound = min(2 ** cas, self.bound)
                        half_grid_size = bound / self.grid_size
                        # scale to current cascade's resolution
                        cas_xyzs = xyzs * (bound - half_grid_size)
                        # add noise in [-hgs, hgs]
                        cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
                        # query density
                        sigmas = self.density(cas_xyzs)['sigma'].reshape(-1).detach()
                        # assign 
                        tmp_grid[cas, indices] = sigmas
        
        # ema update
        valid_mask = self.density_grid >= 0
        self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])
        self.mean_density = torch.mean(self.density_grid[valid_mask]).item()
        self.iter_density += 1

        # convert to bitfield
        density_thresh = min(self.mean_density, self.density_thresh)
        self.density_bitfield = raymarching.packbits(self.density_grid, density_thresh, self.density_bitfield)

        ### update step counter
        total_step = min(16, self.local_step)
        if total_step > 0:
            self.mean_count = int(self.step_counter[:total_step, 0].sum().item() / total_step)
        self.local_step = 0

        # print(f'[density grid] min={self.density_grid.min().item():.4f}, max={self.density_grid.max().item():.4f}, mean={self.mean_density:.4f}, occ_rate={(self.density_grid > density_thresh).sum() / (128**3 * self.cascade):.3f} | [step counter] mean={self.mean_count}')


    def render(self, rays_o, rays_d, staged=False, max_ray_batch=4096, **kwargs):
        # rays_o, rays_d: [B, N, 3], assumes B == 1
        # return: pred_rgb: [B, N, 3]

        if self.cuda_ray:
            _run = self.run_cuda
        else:
            _run = self.run

        B, N = rays_o.shape[:2]
        device = rays_o.device

        # never stage when cuda_ray
        if staged and not self.cuda_ray:
            depth = torch.empty((B, N), device=device)
            image = torch.empty((B, N, 3), device=device)
            weights_sum = torch.empty((B, N), device=device)

            for b in range(B):
                head = 0
                while head < N:
                    tail = min(head + max_ray_batch, N)
                    results_ = _run(rays_o[b:b+1, head:tail], rays_d[b:b+1, head:tail], **kwargs)
                    depth[b:b+1, head:tail] = results_['depth']
                    weights_sum[b:b+1, head:tail] = results_['weights_sum']
                    image[b:b+1, head:tail] = results_['image']
                    head += max_ray_batch
            
            results = {}
            results['depth'] = depth
            results['image'] = image
            results['weights_sum'] = weights_sum

        else:
            results = _run(rays_o, rays_d, **kwargs)

        return results