File size: 4,999 Bytes
904ef7d
 
 
 
 
 
30e1aa8
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e1aa8
 
 
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e1aa8
904ef7d
 
30e1aa8
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import torch.nn as nn
import torch.nn.functional as F

from activation import trunc_exp
from .renderer import NeRFRenderer
from encoding import get_encoder

import numpy as np
import tinycudann as tcnn

class MLP(nn.Module):
    def __init__(self, dim_in, dim_out, dim_hidden, num_layers, bias=True):
        super().__init__()
        self.dim_in = dim_in
        self.dim_out = dim_out
        self.dim_hidden = dim_hidden
        self.num_layers = num_layers

        net = []
        for l in range(num_layers):
            net.append(nn.Linear(self.dim_in if l == 0 else self.dim_hidden, self.dim_out if l == num_layers - 1 else self.dim_hidden, bias=bias))

        self.net = nn.ModuleList(net)
    
    def forward(self, x):
        for l in range(self.num_layers):
            x = self.net[l](x)
            if l != self.num_layers - 1:
                x = F.relu(x, inplace=True)
        return x


class NeRFNetwork(NeRFRenderer):
    def __init__(self, 
                 opt,
                 num_layers=3,
                 hidden_dim=64,
                 num_layers_bg=2,
                 hidden_dim_bg=64,
                 ):
        
        super().__init__(opt)

        self.num_layers = num_layers
        self.hidden_dim = hidden_dim

        per_level_scale = np.exp2(np.log2(2048 * self.bound / 16) / (16 - 1))

        self.encoder = tcnn.Encoding(
            n_input_dims=3,
            encoding_config={
                "otype": "HashGrid",
                "n_levels": 16,
                "n_features_per_level": 2,
                "log2_hashmap_size": 19,
                "base_resolution": 16,
                "per_level_scale": per_level_scale,
            },
        )

        self.sigma_net = MLP(32, 4, hidden_dim, num_layers, bias=True)

        # background network
        if self.bg_radius > 0:
            self.num_layers_bg = num_layers_bg   
            self.hidden_dim_bg = hidden_dim_bg

            self.encoder_bg, self.in_dim_bg = get_encoder('frequency', input_dim=3)

            self.bg_net = MLP(self.in_dim_bg, 3, hidden_dim_bg, num_layers_bg, bias=True)
            
        else:
            self.bg_net = None

    def gaussian(self, x):
        # x: [B, N, 3]
        
        d = (x ** 2).sum(-1)
        g = 5 * torch.exp(-d / (2 * 0.2 ** 2))

        return g

    def common_forward(self, x):
        # x: [N, 3], in [-bound, bound]

        # sigma
        h = (x + self.bound) / (2 * self.bound) # to [0, 1]
        h = self.encoder(h)

        h = self.sigma_net(h)

        sigma = trunc_exp(h[..., 0] + self.gaussian(x))
        albedo = torch.sigmoid(h[..., 1:])

        return sigma, albedo

    
    def forward(self, x, d, l=None, ratio=1, shading='albedo'):
        # x: [N, 3], in [-bound, bound]
        # d: [N, 3], view direction, nomalized in [-1, 1]
        # l: [3], plane light direction, nomalized in [-1, 1]
        # ratio: scalar, ambient ratio, 1 == no shading (albedo only)

        if shading == 'albedo':
            # no need to query normal
            sigma, color = self.common_forward(x)
            normal = None
        
        else:
            # query normal
            has_grad = torch.is_grad_enabled()

            with torch.enable_grad():
                x.requires_grad_(True)
                sigma, albedo = self.common_forward(x)
                # query gradient
                normal = torch.autograd.grad(torch.sum(sigma), x, create_graph=True)[0] # [N, 3]

                # normalize...
                normal = normal / (torch.norm(normal, dim=-1, keepdim=True) + 1e-9)
                normal[torch.isnan(normal)] = 0

            if not has_grad:
                normal = normal.detach()

            # lambertian shading
            lambertian = ratio + (1 - ratio) * (normal @ l).clamp(min=0) # [N,]

            if shading == 'textureless':
                color = lambertian.unsqueeze(-1).repeat(1, 3)
            elif shading == 'normal':
                color = (normal + 1) / 2
            else: # 'lambertian'
                color = albedo * lambertian.unsqueeze(-1)
            
        return sigma, color, normal

      
    def density(self, x):
        # x: [N, 3], in [-bound, bound]
        
        sigma, _ = self.common_forward(x)
        
        return {
            'sigma': sigma
        }


    def background(self, d):
        # x: [N, 2], in [-1, 1]

        h = self.encoder_bg(d) # [N, C]
        
        h = self.bg_net(h)

        # sigmoid activation for rgb
        rgbs = torch.sigmoid(h)

        return rgbs

    # optimizer utils
    def get_params(self, lr):

        params = [
            {'params': self.encoder.parameters(), 'lr': lr * 10},
            {'params': self.sigma_net.parameters(), 'lr': lr},
        ]        

        if self.bg_radius > 0:
            params.append({'params': self.encoder_bg.parameters(), 'lr': lr * 10})
            params.append({'params': self.bg_net.parameters(), 'lr': lr})

        return params