File size: 19,553 Bytes
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6e1b58
904ef7d
 
 
 
 
f6e1b58
 
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import math
import torch
import numpy as np
import dearpygui.dearpygui as dpg
from scipy.spatial.transform import Rotation as R

from nerf.utils import *


class OrbitCamera:
    def __init__(self, W, H, r=2, fovy=60):
        self.W = W
        self.H = H
        self.radius = r # camera distance from center
        self.fovy = fovy # in degree
        self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
        self.rot = R.from_quat([1, 0, 0, 0]) # init camera matrix: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] (to suit ngp convention)
        self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized!

    # pose
    @property
    def pose(self):
        # first move camera to radius
        res = np.eye(4, dtype=np.float32)
        res[2, 3] -= self.radius
        # rotate
        rot = np.eye(4, dtype=np.float32)
        rot[:3, :3] = self.rot.as_matrix()
        res = rot @ res
        # translate
        res[:3, 3] -= self.center
        return res
    
    # intrinsics
    @property
    def intrinsics(self):
        focal = self.H / (2 * np.tan(np.deg2rad(self.fovy) / 2))
        return np.array([focal, focal, self.W // 2, self.H // 2])
    
    def orbit(self, dx, dy):
        # rotate along camera up/side axis!
        side = self.rot.as_matrix()[:3, 0] # why this is side --> ? # already normalized.
        rotvec_x = self.up * np.deg2rad(-0.1 * dx)
        rotvec_y = side * np.deg2rad(-0.1 * dy)
        self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot

    def scale(self, delta):
        self.radius *= 1.1 ** (-delta)

    def pan(self, dx, dy, dz=0):
        # pan in camera coordinate system (careful on the sensitivity!)
        self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([dx, dy, dz])


class NeRFGUI:
    def __init__(self, opt, trainer, debug=True):
        self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
        self.W = opt.W
        self.H = opt.H
        self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
        self.debug = debug
        self.bg_color = torch.ones(3, dtype=torch.float32) # default white bg
        self.training = False
        self.step = 0 # training step 

        self.trainer = trainer
        self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
        self.need_update = True # camera moved, should reset accumulation
        self.spp = 1 # sample per pixel
        self.light_dir = np.array([opt.light_theta, opt.light_phi])
        self.ambient_ratio = 1.0
        self.mode = 'image' # choose from ['image', 'depth']
        self.shading = 'albedo'

        self.dynamic_resolution = True
        self.downscale = 1
        self.train_steps = 16

        dpg.create_context()
        self.register_dpg()
        self.test_step()
        

    def __del__(self):
        dpg.destroy_context()


    def train_step(self):

        starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
        starter.record()

        outputs = self.trainer.train_gui(self.trainer.train_loader, step=self.train_steps)

        ender.record()
        torch.cuda.synchronize()
        t = starter.elapsed_time(ender)

        self.step += self.train_steps
        self.need_update = True

        dpg.set_value("_log_train_time", f'{t:.4f}ms ({int(1000/t)} FPS)')
        dpg.set_value("_log_train_log", f'step = {self.step: 5d} (+{self.train_steps: 2d}), loss = {outputs["loss"]:.4f}, lr = {outputs["lr"]:.5f}')

        # dynamic train steps
        # max allowed train time per-frame is 500 ms
        full_t = t / self.train_steps * 16
        train_steps = min(16, max(4, int(16 * 500 / full_t)))
        if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8:
            self.train_steps = train_steps


    def prepare_buffer(self, outputs):
        if self.mode == 'image':
            return outputs['image']
        else:
            return np.expand_dims(outputs['depth'], -1).repeat(3, -1)

    
    def test_step(self):

        if self.need_update or self.spp < self.opt.max_spp:
        
            starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
            starter.record()

            outputs = self.trainer.test_gui(self.cam.pose, self.cam.intrinsics, self.W, self.H, self.bg_color, self.spp, self.downscale, self.light_dir, self.ambient_ratio, self.shading)

            ender.record()
            torch.cuda.synchronize()
            t = starter.elapsed_time(ender)

            # update dynamic resolution
            if self.dynamic_resolution:
                # max allowed infer time per-frame is 200 ms
                full_t = t / (self.downscale ** 2)
                downscale = min(1, max(1/4, math.sqrt(200 / full_t)))
                if downscale > self.downscale * 1.2 or downscale < self.downscale * 0.8:
                    self.downscale = downscale

            if self.need_update:
                self.render_buffer = self.prepare_buffer(outputs)
                self.spp = 1
                self.need_update = False
            else:
                self.render_buffer = (self.render_buffer * self.spp + self.prepare_buffer(outputs)) / (self.spp + 1)
                self.spp += 1

            dpg.set_value("_log_infer_time", f'{t:.4f}ms ({int(1000/t)} FPS)')
            dpg.set_value("_log_resolution", f'{int(self.downscale * self.W)}x{int(self.downscale * self.H)}')
            dpg.set_value("_log_spp", self.spp)
            dpg.set_value("_texture", self.render_buffer)

        
    def register_dpg(self):

        ### register texture 

        with dpg.texture_registry(show=False):
            dpg.add_raw_texture(self.W, self.H, self.render_buffer, format=dpg.mvFormat_Float_rgb, tag="_texture")

        ### register window

        # the rendered image, as the primary window
        with dpg.window(tag="_primary_window", width=self.W, height=self.H):

            # add the texture
            dpg.add_image("_texture")

        dpg.set_primary_window("_primary_window", True)

        # control window
        with dpg.window(label="Control", tag="_control_window", width=400, height=300):

            # text prompt
            if self.opt.text is not None:
                dpg.add_text("text: " + self.opt.text, tag="_log_prompt_text")

            # button theme
            with dpg.theme() as theme_button:
                with dpg.theme_component(dpg.mvButton):
                    dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
                    dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
                    dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
                    dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
                    dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)

            # time
            if not self.opt.test:
                with dpg.group(horizontal=True):
                    dpg.add_text("Train time: ")
                    dpg.add_text("no data", tag="_log_train_time")                    

            with dpg.group(horizontal=True):
                dpg.add_text("Infer time: ")
                dpg.add_text("no data", tag="_log_infer_time")
            
            with dpg.group(horizontal=True):
                dpg.add_text("SPP: ")
                dpg.add_text("1", tag="_log_spp")

            # train button
            if not self.opt.test:
                with dpg.collapsing_header(label="Train", default_open=True):
                    with dpg.group(horizontal=True):
                        dpg.add_text("Train: ")

                        def callback_train(sender, app_data):
                            if self.training:
                                self.training = False
                                dpg.configure_item("_button_train", label="start")
                            else:
                                self.training = True
                                dpg.configure_item("_button_train", label="stop")

                        dpg.add_button(label="start", tag="_button_train", callback=callback_train)
                        dpg.bind_item_theme("_button_train", theme_button)

                        def callback_reset(sender, app_data):
                            @torch.no_grad()
                            def weight_reset(m: nn.Module):
                                reset_parameters = getattr(m, "reset_parameters", None)
                                if callable(reset_parameters):
                                    m.reset_parameters()
                            self.trainer.model.apply(fn=weight_reset)
                            self.trainer.model.reset_extra_state() # for cuda_ray density_grid and step_counter
                            self.need_update = True

                        dpg.add_button(label="reset", tag="_button_reset", callback=callback_reset)
                        dpg.bind_item_theme("_button_reset", theme_button)


                    with dpg.group(horizontal=True):
                        dpg.add_text("Checkpoint: ")

                        def callback_save(sender, app_data):
                            self.trainer.save_checkpoint(full=True, best=False)
                            dpg.set_value("_log_ckpt", "saved " + os.path.basename(self.trainer.stats["checkpoints"][-1]))
                            self.trainer.epoch += 1 # use epoch to indicate different calls.

                        dpg.add_button(label="save", tag="_button_save", callback=callback_save)
                        dpg.bind_item_theme("_button_save", theme_button)

                        dpg.add_text("", tag="_log_ckpt")

                    # save mesh
                    with dpg.group(horizontal=True):
                        dpg.add_text("Marching Cubes: ")

                        def callback_mesh(sender, app_data):
                            self.trainer.save_mesh(resolution=256, threshold=10)
                            dpg.set_value("_log_mesh", "saved " + f'{self.trainer.name}_{self.trainer.epoch}.ply')
                            self.trainer.epoch += 1 # use epoch to indicate different calls.

                        dpg.add_button(label="mesh", tag="_button_mesh", callback=callback_mesh)
                        dpg.bind_item_theme("_button_mesh", theme_button)

                        dpg.add_text("", tag="_log_mesh")                        

                    with dpg.group(horizontal=True):
                        dpg.add_text("", tag="_log_train_log")

            
            # rendering options
            with dpg.collapsing_header(label="Options", default_open=True):

                # dynamic rendering resolution
                with dpg.group(horizontal=True):

                    def callback_set_dynamic_resolution(sender, app_data):
                        if self.dynamic_resolution:
                            self.dynamic_resolution = False
                            self.downscale = 1
                        else:
                            self.dynamic_resolution = True
                        self.need_update = True

                    dpg.add_checkbox(label="dynamic resolution", default_value=self.dynamic_resolution, callback=callback_set_dynamic_resolution)
                    dpg.add_text(f"{self.W}x{self.H}", tag="_log_resolution")

                # mode combo
                def callback_change_mode(sender, app_data):
                    self.mode = app_data
                    self.need_update = True
                
                dpg.add_combo(('image', 'depth'), label='mode', default_value=self.mode, callback=callback_change_mode)

                # bg_color picker
                def callback_change_bg(sender, app_data):
                    self.bg_color = torch.tensor(app_data[:3], dtype=torch.float32) # only need RGB in [0, 1]
                    self.need_update = True

                dpg.add_color_edit((255, 255, 255), label="Background Color", width=200, tag="_color_editor", no_alpha=True, callback=callback_change_bg)

                # fov slider
                def callback_set_fovy(sender, app_data):
                    self.cam.fovy = app_data
                    self.need_update = True

                dpg.add_slider_int(label="FoV (vertical)", min_value=1, max_value=120, format="%d deg", default_value=self.cam.fovy, callback=callback_set_fovy)

                # dt_gamma slider
                def callback_set_dt_gamma(sender, app_data):
                    self.opt.dt_gamma = app_data
                    self.need_update = True

                dpg.add_slider_float(label="dt_gamma", min_value=0, max_value=0.1, format="%.5f", default_value=self.opt.dt_gamma, callback=callback_set_dt_gamma)

                # max_steps slider
                def callback_set_max_steps(sender, app_data):
                    self.opt.max_steps = app_data
                    self.need_update = True

                dpg.add_slider_int(label="max steps", min_value=1, max_value=1024, format="%d", default_value=self.opt.max_steps, callback=callback_set_max_steps)

                # aabb slider
                def callback_set_aabb(sender, app_data, user_data):
                    # user_data is the dimension for aabb (xmin, ymin, zmin, xmax, ymax, zmax)
                    self.trainer.model.aabb_infer[user_data] = app_data

                    # also change train aabb ? [better not...]
                    #self.trainer.model.aabb_train[user_data] = app_data

                    self.need_update = True

                dpg.add_separator()
                dpg.add_text("Axis-aligned bounding box:")

                with dpg.group(horizontal=True):
                    dpg.add_slider_float(label="x", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=0)
                    dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=3)

                with dpg.group(horizontal=True):
                    dpg.add_slider_float(label="y", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=1)
                    dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=4)

                with dpg.group(horizontal=True):
                    dpg.add_slider_float(label="z", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=2)
                    dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=5)

                # light dir
                def callback_set_light_dir(sender, app_data, user_data):
                    self.light_dir[user_data] = app_data
                    self.need_update = True

                dpg.add_separator()
                dpg.add_text("Plane Light Direction:")

                with dpg.group(horizontal=True):
                    dpg.add_slider_float(label="theta", min_value=0, max_value=180, format="%.2f", default_value=self.opt.light_theta, callback=callback_set_light_dir, user_data=0)

                with dpg.group(horizontal=True):
                    dpg.add_slider_float(label="phi", min_value=0, max_value=360, format="%.2f", default_value=self.opt.light_phi, callback=callback_set_light_dir, user_data=1)

                # ambient ratio
                def callback_set_abm_ratio(sender, app_data):
                    self.ambient_ratio = app_data
                    self.need_update = True

                dpg.add_slider_float(label="ambient", min_value=0, max_value=1.0, format="%.5f", default_value=self.ambient_ratio, callback=callback_set_abm_ratio)

                # shading mode
                def callback_change_shading(sender, app_data):
                    self.shading = app_data
                    self.need_update = True
                
                dpg.add_combo(('albedo', 'lambertian', 'textureless', 'normal'), label='shading', default_value=self.shading, callback=callback_change_shading)


            # debug info
            if self.debug:
                with dpg.collapsing_header(label="Debug"):
                    # pose
                    dpg.add_separator()
                    dpg.add_text("Camera Pose:")
                    dpg.add_text(str(self.cam.pose), tag="_log_pose")


        ### register camera handler

        def callback_camera_drag_rotate(sender, app_data):

            if not dpg.is_item_focused("_primary_window"):
                return

            dx = app_data[1]
            dy = app_data[2]

            self.cam.orbit(dx, dy)
            self.need_update = True

            if self.debug:
                dpg.set_value("_log_pose", str(self.cam.pose))


        def callback_camera_wheel_scale(sender, app_data):

            if not dpg.is_item_focused("_primary_window"):
                return

            delta = app_data

            self.cam.scale(delta)
            self.need_update = True

            if self.debug:
                dpg.set_value("_log_pose", str(self.cam.pose))


        def callback_camera_drag_pan(sender, app_data):

            if not dpg.is_item_focused("_primary_window"):
                return

            dx = app_data[1]
            dy = app_data[2]

            self.cam.pan(dx, dy)
            self.need_update = True

            if self.debug:
                dpg.set_value("_log_pose", str(self.cam.pose))


        with dpg.handler_registry():
            dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Left, callback=callback_camera_drag_rotate)
            dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
            dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan)

        
        dpg.create_viewport(title='torch-ngp', width=self.W, height=self.H, resizable=False)
        
        # TODO: seems dearpygui doesn't support resizing texture...
        # def callback_resize(sender, app_data):
        #     self.W = app_data[0]
        #     self.H = app_data[1]
        #     # how to reload texture ???

        # dpg.set_viewport_resize_callback(callback_resize)

        ### global theme
        with dpg.theme() as theme_no_padding:
            with dpg.theme_component(dpg.mvAll):
                # set all padding to 0 to avoid scroll bar
                dpg.add_theme_style(dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core)
                dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core)
                dpg.add_theme_style(dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core)
        
        dpg.bind_item_theme("_primary_window", theme_no_padding)

        dpg.setup_dearpygui()

        #dpg.show_metrics()

        dpg.show_viewport()


    def render(self):

        while dpg.is_dearpygui_running():
            # update texture every frame
            if self.training:
                self.train_step()
            self.test_step()
            dpg.render_dearpygui_frame()