File size: 19,553 Bytes
904ef7d f6e1b58 904ef7d f6e1b58 904ef7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import math
import torch
import numpy as np
import dearpygui.dearpygui as dpg
from scipy.spatial.transform import Rotation as R
from nerf.utils import *
class OrbitCamera:
def __init__(self, W, H, r=2, fovy=60):
self.W = W
self.H = H
self.radius = r # camera distance from center
self.fovy = fovy # in degree
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
self.rot = R.from_quat([1, 0, 0, 0]) # init camera matrix: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] (to suit ngp convention)
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized!
# pose
@property
def pose(self):
# first move camera to radius
res = np.eye(4, dtype=np.float32)
res[2, 3] -= self.radius
# rotate
rot = np.eye(4, dtype=np.float32)
rot[:3, :3] = self.rot.as_matrix()
res = rot @ res
# translate
res[:3, 3] -= self.center
return res
# intrinsics
@property
def intrinsics(self):
focal = self.H / (2 * np.tan(np.deg2rad(self.fovy) / 2))
return np.array([focal, focal, self.W // 2, self.H // 2])
def orbit(self, dx, dy):
# rotate along camera up/side axis!
side = self.rot.as_matrix()[:3, 0] # why this is side --> ? # already normalized.
rotvec_x = self.up * np.deg2rad(-0.1 * dx)
rotvec_y = side * np.deg2rad(-0.1 * dy)
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot
def scale(self, delta):
self.radius *= 1.1 ** (-delta)
def pan(self, dx, dy, dz=0):
# pan in camera coordinate system (careful on the sensitivity!)
self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([dx, dy, dz])
class NeRFGUI:
def __init__(self, opt, trainer, debug=True):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.W = opt.W
self.H = opt.H
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
self.debug = debug
self.bg_color = torch.ones(3, dtype=torch.float32) # default white bg
self.training = False
self.step = 0 # training step
self.trainer = trainer
self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # camera moved, should reset accumulation
self.spp = 1 # sample per pixel
self.light_dir = np.array([opt.light_theta, opt.light_phi])
self.ambient_ratio = 1.0
self.mode = 'image' # choose from ['image', 'depth']
self.shading = 'albedo'
self.dynamic_resolution = True
self.downscale = 1
self.train_steps = 16
dpg.create_context()
self.register_dpg()
self.test_step()
def __del__(self):
dpg.destroy_context()
def train_step(self):
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
outputs = self.trainer.train_gui(self.trainer.train_loader, step=self.train_steps)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.step += self.train_steps
self.need_update = True
dpg.set_value("_log_train_time", f'{t:.4f}ms ({int(1000/t)} FPS)')
dpg.set_value("_log_train_log", f'step = {self.step: 5d} (+{self.train_steps: 2d}), loss = {outputs["loss"]:.4f}, lr = {outputs["lr"]:.5f}')
# dynamic train steps
# max allowed train time per-frame is 500 ms
full_t = t / self.train_steps * 16
train_steps = min(16, max(4, int(16 * 500 / full_t)))
if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8:
self.train_steps = train_steps
def prepare_buffer(self, outputs):
if self.mode == 'image':
return outputs['image']
else:
return np.expand_dims(outputs['depth'], -1).repeat(3, -1)
def test_step(self):
if self.need_update or self.spp < self.opt.max_spp:
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
outputs = self.trainer.test_gui(self.cam.pose, self.cam.intrinsics, self.W, self.H, self.bg_color, self.spp, self.downscale, self.light_dir, self.ambient_ratio, self.shading)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
# update dynamic resolution
if self.dynamic_resolution:
# max allowed infer time per-frame is 200 ms
full_t = t / (self.downscale ** 2)
downscale = min(1, max(1/4, math.sqrt(200 / full_t)))
if downscale > self.downscale * 1.2 or downscale < self.downscale * 0.8:
self.downscale = downscale
if self.need_update:
self.render_buffer = self.prepare_buffer(outputs)
self.spp = 1
self.need_update = False
else:
self.render_buffer = (self.render_buffer * self.spp + self.prepare_buffer(outputs)) / (self.spp + 1)
self.spp += 1
dpg.set_value("_log_infer_time", f'{t:.4f}ms ({int(1000/t)} FPS)')
dpg.set_value("_log_resolution", f'{int(self.downscale * self.W)}x{int(self.downscale * self.H)}')
dpg.set_value("_log_spp", self.spp)
dpg.set_value("_texture", self.render_buffer)
def register_dpg(self):
### register texture
with dpg.texture_registry(show=False):
dpg.add_raw_texture(self.W, self.H, self.render_buffer, format=dpg.mvFormat_Float_rgb, tag="_texture")
### register window
# the rendered image, as the primary window
with dpg.window(tag="_primary_window", width=self.W, height=self.H):
# add the texture
dpg.add_image("_texture")
dpg.set_primary_window("_primary_window", True)
# control window
with dpg.window(label="Control", tag="_control_window", width=400, height=300):
# text prompt
if self.opt.text is not None:
dpg.add_text("text: " + self.opt.text, tag="_log_prompt_text")
# button theme
with dpg.theme() as theme_button:
with dpg.theme_component(dpg.mvButton):
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)
# time
if not self.opt.test:
with dpg.group(horizontal=True):
dpg.add_text("Train time: ")
dpg.add_text("no data", tag="_log_train_time")
with dpg.group(horizontal=True):
dpg.add_text("Infer time: ")
dpg.add_text("no data", tag="_log_infer_time")
with dpg.group(horizontal=True):
dpg.add_text("SPP: ")
dpg.add_text("1", tag="_log_spp")
# train button
if not self.opt.test:
with dpg.collapsing_header(label="Train", default_open=True):
with dpg.group(horizontal=True):
dpg.add_text("Train: ")
def callback_train(sender, app_data):
if self.training:
self.training = False
dpg.configure_item("_button_train", label="start")
else:
self.training = True
dpg.configure_item("_button_train", label="stop")
dpg.add_button(label="start", tag="_button_train", callback=callback_train)
dpg.bind_item_theme("_button_train", theme_button)
def callback_reset(sender, app_data):
@torch.no_grad()
def weight_reset(m: nn.Module):
reset_parameters = getattr(m, "reset_parameters", None)
if callable(reset_parameters):
m.reset_parameters()
self.trainer.model.apply(fn=weight_reset)
self.trainer.model.reset_extra_state() # for cuda_ray density_grid and step_counter
self.need_update = True
dpg.add_button(label="reset", tag="_button_reset", callback=callback_reset)
dpg.bind_item_theme("_button_reset", theme_button)
with dpg.group(horizontal=True):
dpg.add_text("Checkpoint: ")
def callback_save(sender, app_data):
self.trainer.save_checkpoint(full=True, best=False)
dpg.set_value("_log_ckpt", "saved " + os.path.basename(self.trainer.stats["checkpoints"][-1]))
self.trainer.epoch += 1 # use epoch to indicate different calls.
dpg.add_button(label="save", tag="_button_save", callback=callback_save)
dpg.bind_item_theme("_button_save", theme_button)
dpg.add_text("", tag="_log_ckpt")
# save mesh
with dpg.group(horizontal=True):
dpg.add_text("Marching Cubes: ")
def callback_mesh(sender, app_data):
self.trainer.save_mesh(resolution=256, threshold=10)
dpg.set_value("_log_mesh", "saved " + f'{self.trainer.name}_{self.trainer.epoch}.ply')
self.trainer.epoch += 1 # use epoch to indicate different calls.
dpg.add_button(label="mesh", tag="_button_mesh", callback=callback_mesh)
dpg.bind_item_theme("_button_mesh", theme_button)
dpg.add_text("", tag="_log_mesh")
with dpg.group(horizontal=True):
dpg.add_text("", tag="_log_train_log")
# rendering options
with dpg.collapsing_header(label="Options", default_open=True):
# dynamic rendering resolution
with dpg.group(horizontal=True):
def callback_set_dynamic_resolution(sender, app_data):
if self.dynamic_resolution:
self.dynamic_resolution = False
self.downscale = 1
else:
self.dynamic_resolution = True
self.need_update = True
dpg.add_checkbox(label="dynamic resolution", default_value=self.dynamic_resolution, callback=callback_set_dynamic_resolution)
dpg.add_text(f"{self.W}x{self.H}", tag="_log_resolution")
# mode combo
def callback_change_mode(sender, app_data):
self.mode = app_data
self.need_update = True
dpg.add_combo(('image', 'depth'), label='mode', default_value=self.mode, callback=callback_change_mode)
# bg_color picker
def callback_change_bg(sender, app_data):
self.bg_color = torch.tensor(app_data[:3], dtype=torch.float32) # only need RGB in [0, 1]
self.need_update = True
dpg.add_color_edit((255, 255, 255), label="Background Color", width=200, tag="_color_editor", no_alpha=True, callback=callback_change_bg)
# fov slider
def callback_set_fovy(sender, app_data):
self.cam.fovy = app_data
self.need_update = True
dpg.add_slider_int(label="FoV (vertical)", min_value=1, max_value=120, format="%d deg", default_value=self.cam.fovy, callback=callback_set_fovy)
# dt_gamma slider
def callback_set_dt_gamma(sender, app_data):
self.opt.dt_gamma = app_data
self.need_update = True
dpg.add_slider_float(label="dt_gamma", min_value=0, max_value=0.1, format="%.5f", default_value=self.opt.dt_gamma, callback=callback_set_dt_gamma)
# max_steps slider
def callback_set_max_steps(sender, app_data):
self.opt.max_steps = app_data
self.need_update = True
dpg.add_slider_int(label="max steps", min_value=1, max_value=1024, format="%d", default_value=self.opt.max_steps, callback=callback_set_max_steps)
# aabb slider
def callback_set_aabb(sender, app_data, user_data):
# user_data is the dimension for aabb (xmin, ymin, zmin, xmax, ymax, zmax)
self.trainer.model.aabb_infer[user_data] = app_data
# also change train aabb ? [better not...]
#self.trainer.model.aabb_train[user_data] = app_data
self.need_update = True
dpg.add_separator()
dpg.add_text("Axis-aligned bounding box:")
with dpg.group(horizontal=True):
dpg.add_slider_float(label="x", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=0)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=3)
with dpg.group(horizontal=True):
dpg.add_slider_float(label="y", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=1)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=4)
with dpg.group(horizontal=True):
dpg.add_slider_float(label="z", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=2)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=5)
# light dir
def callback_set_light_dir(sender, app_data, user_data):
self.light_dir[user_data] = app_data
self.need_update = True
dpg.add_separator()
dpg.add_text("Plane Light Direction:")
with dpg.group(horizontal=True):
dpg.add_slider_float(label="theta", min_value=0, max_value=180, format="%.2f", default_value=self.opt.light_theta, callback=callback_set_light_dir, user_data=0)
with dpg.group(horizontal=True):
dpg.add_slider_float(label="phi", min_value=0, max_value=360, format="%.2f", default_value=self.opt.light_phi, callback=callback_set_light_dir, user_data=1)
# ambient ratio
def callback_set_abm_ratio(sender, app_data):
self.ambient_ratio = app_data
self.need_update = True
dpg.add_slider_float(label="ambient", min_value=0, max_value=1.0, format="%.5f", default_value=self.ambient_ratio, callback=callback_set_abm_ratio)
# shading mode
def callback_change_shading(sender, app_data):
self.shading = app_data
self.need_update = True
dpg.add_combo(('albedo', 'lambertian', 'textureless', 'normal'), label='shading', default_value=self.shading, callback=callback_change_shading)
# debug info
if self.debug:
with dpg.collapsing_header(label="Debug"):
# pose
dpg.add_separator()
dpg.add_text("Camera Pose:")
dpg.add_text(str(self.cam.pose), tag="_log_pose")
### register camera handler
def callback_camera_drag_rotate(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.orbit(dx, dy)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
def callback_camera_wheel_scale(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
delta = app_data
self.cam.scale(delta)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
def callback_camera_drag_pan(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.pan(dx, dy)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
with dpg.handler_registry():
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Left, callback=callback_camera_drag_rotate)
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan)
dpg.create_viewport(title='torch-ngp', width=self.W, height=self.H, resizable=False)
# TODO: seems dearpygui doesn't support resizing texture...
# def callback_resize(sender, app_data):
# self.W = app_data[0]
# self.H = app_data[1]
# # how to reload texture ???
# dpg.set_viewport_resize_callback(callback_resize)
### global theme
with dpg.theme() as theme_no_padding:
with dpg.theme_component(dpg.mvAll):
# set all padding to 0 to avoid scroll bar
dpg.add_theme_style(dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.add_theme_style(dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.bind_item_theme("_primary_window", theme_no_padding)
dpg.setup_dearpygui()
#dpg.show_metrics()
dpg.show_viewport()
def render(self):
while dpg.is_dearpygui_running():
# update texture every frame
if self.training:
self.train_step()
self.test_step()
dpg.render_dearpygui_frame() |