File size: 2,232 Bytes
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np

import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.cuda.amp import custom_bwd, custom_fwd 

try:
    import _freqencoder as _backend
except ImportError:
    from .backend import _backend


class _freq_encoder(Function):
    @staticmethod
    @custom_fwd(cast_inputs=torch.float32) # force float32 for better precision
    def forward(ctx, inputs, degree, output_dim):
        # inputs: [B, input_dim], float 
        # RETURN: [B, F], float

        if not inputs.is_cuda: inputs = inputs.cuda()
        inputs = inputs.contiguous()

        B, input_dim = inputs.shape # batch size, coord dim
        
        outputs = torch.empty(B, output_dim, dtype=inputs.dtype, device=inputs.device)

        _backend.freq_encode_forward(inputs, B, input_dim, degree, output_dim, outputs)

        ctx.save_for_backward(inputs, outputs)
        ctx.dims = [B, input_dim, degree, output_dim]

        return outputs
    
    @staticmethod
    #@once_differentiable
    @custom_bwd
    def backward(ctx, grad):
        # grad: [B, C * C]

        grad = grad.contiguous()
        inputs, outputs = ctx.saved_tensors
        B, input_dim, degree, output_dim = ctx.dims

        grad_inputs = torch.zeros_like(inputs)
        _backend.freq_encode_backward(grad, outputs, B, input_dim, degree, output_dim, grad_inputs)

        return grad_inputs, None, None
    

freq_encode = _freq_encoder.apply


class FreqEncoder(nn.Module):
    def __init__(self, input_dim=3, degree=4):
        super().__init__()

        self.input_dim = input_dim
        self.degree = degree
        self.output_dim = input_dim + input_dim * 2 * degree
        
    def __repr__(self):
        return f"FreqEncoder: input_dim={self.input_dim} degree={self.degree} output_dim={self.output_dim}"
    
    def forward(self, inputs, **kwargs):
        # inputs: [..., input_dim]
        # return: [..., ]

        prefix_shape = list(inputs.shape[:-1])
        inputs = inputs.reshape(-1, self.input_dim)

        outputs = freq_encode(inputs, self.degree, self.output_dim)

        outputs = outputs.reshape(prefix_shape + [self.output_dim])

        return outputs