File size: 31,326 Bytes
904ef7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fbfd2
904ef7d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>

#include <ATen/cuda/CUDAContext.h>
#include <torch/torch.h>

#include <cstdio>
#include <stdint.h>
#include <stdexcept>
#include <limits>

#define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be a contiguous tensor")
#define CHECK_IS_INT(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Int, #x " must be an int tensor")
#define CHECK_IS_FLOATING(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Float || x.scalar_type() == at::ScalarType::Half || x.scalar_type() == at::ScalarType::Double, #x " must be a floating tensor")


inline constexpr __device__ float SQRT3() { return 1.7320508075688772f; }
inline constexpr __device__ float RSQRT3() { return 0.5773502691896258f; }
inline constexpr __device__ float PI() { return 3.141592653589793f; }
inline constexpr __device__ float RPI() { return 0.3183098861837907f; }


template <typename T>
inline __host__ __device__ T div_round_up(T val, T divisor) {
    return (val + divisor - 1) / divisor;
}

inline __host__ __device__ float signf(const float x) {
    return copysignf(1.0, x);
}

inline __host__ __device__ float clamp(const float x, const float min, const float max) {
    return fminf(max, fmaxf(min, x));
}

inline __host__ __device__ void swapf(float& a, float& b) {
    float c = a; a = b; b = c;
}

inline __device__ int mip_from_pos(const float x, const float y, const float z, const float max_cascade) {
    const float mx = fmaxf(fabsf(x), fmaxf(fabs(y), fabs(z)));
    int exponent;
    frexpf(mx, &exponent); // [0, 0.5) --> -1, [0.5, 1) --> 0, [1, 2) --> 1, [2, 4) --> 2, ...
    return fminf(max_cascade - 1, fmaxf(0, exponent));
}

inline __device__ int mip_from_dt(const float dt, const float H, const float max_cascade) {
    const float mx = dt * H * 0.5;
    int exponent;
    frexpf(mx, &exponent);
    return fminf(max_cascade - 1, fmaxf(0, exponent));
}

inline __host__ __device__ uint32_t __expand_bits(uint32_t v)
{
	v = (v * 0x00010001u) & 0xFF0000FFu;
	v = (v * 0x00000101u) & 0x0F00F00Fu;
	v = (v * 0x00000011u) & 0xC30C30C3u;
	v = (v * 0x00000005u) & 0x49249249u;
	return v;
}

inline __host__ __device__ uint32_t __morton3D(uint32_t x, uint32_t y, uint32_t z)
{
	uint32_t xx = __expand_bits(x);
	uint32_t yy = __expand_bits(y);
	uint32_t zz = __expand_bits(z);
	return xx | (yy << 1) | (zz << 2);
}

inline __host__ __device__ uint32_t __morton3D_invert(uint32_t x)
{
	x = x & 0x49249249;
	x = (x | (x >> 2)) & 0xc30c30c3;
	x = (x | (x >> 4)) & 0x0f00f00f;
	x = (x | (x >> 8)) & 0xff0000ff;
	x = (x | (x >> 16)) & 0x0000ffff;
	return x;
}


////////////////////////////////////////////////////
/////////////           utils          /////////////
////////////////////////////////////////////////////

// rays_o/d: [N, 3]
// nears/fars: [N]
// scalar_t should always be float in use.
template <typename scalar_t>
__global__ void kernel_near_far_from_aabb(
    const scalar_t * __restrict__ rays_o,
    const scalar_t * __restrict__ rays_d,
    const scalar_t * __restrict__ aabb,
    const uint32_t N,
    const float min_near,
    scalar_t * nears, scalar_t * fars
) {
    // parallel per ray
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= N) return;

    // locate
    rays_o += n * 3;
    rays_d += n * 3;

    const float ox = rays_o[0], oy = rays_o[1], oz = rays_o[2];
    const float dx = rays_d[0], dy = rays_d[1], dz = rays_d[2];
    const float rdx = 1 / dx, rdy = 1 / dy, rdz = 1 / dz;

    // get near far (assume cube scene)
    float near = (aabb[0] - ox) * rdx;
    float far = (aabb[3] - ox) * rdx;
    if (near > far) swapf(near, far);

    float near_y = (aabb[1] - oy) * rdy;
    float far_y = (aabb[4] - oy) * rdy;
    if (near_y > far_y) swapf(near_y, far_y);

    if (near > far_y || near_y > far) {
        nears[n] = fars[n] = std::numeric_limits<scalar_t>::max();
        return;
    }

    if (near_y > near) near = near_y;
    if (far_y < far) far = far_y;

    float near_z = (aabb[2] - oz) * rdz;
    float far_z = (aabb[5] - oz) * rdz;
    if (near_z > far_z) swapf(near_z, far_z);

    if (near > far_z || near_z > far) {
        nears[n] = fars[n] = std::numeric_limits<scalar_t>::max();
        return;
    }

    if (near_z > near) near = near_z;
    if (far_z < far) far = far_z;

    if (near < min_near) near = min_near;

    nears[n] = near;
    fars[n] = far;
}


void near_far_from_aabb(const at::Tensor rays_o, const at::Tensor rays_d, const at::Tensor aabb, const uint32_t N, const float min_near, at::Tensor nears, at::Tensor fars) {

    static constexpr uint32_t N_THREAD = 128;

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    rays_o.scalar_type(), "near_far_from_aabb", ([&] {
        kernel_near_far_from_aabb<<<div_round_up(N, N_THREAD), N_THREAD>>>(rays_o.data_ptr<scalar_t>(), rays_d.data_ptr<scalar_t>(), aabb.data_ptr<scalar_t>(), N, min_near, nears.data_ptr<scalar_t>(), fars.data_ptr<scalar_t>());
    }));
}


// rays_o/d: [N, 3]
// radius: float
// coords: [N, 2]
template <typename scalar_t>
__global__ void kernel_sph_from_ray(
    const scalar_t * __restrict__ rays_o,
    const scalar_t * __restrict__ rays_d,
    const float radius,
    const uint32_t N,
    scalar_t * coords
) {
    // parallel per ray
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= N) return;

    // locate
    rays_o += n * 3;
    rays_d += n * 3;
    coords += n * 2;

    const float ox = rays_o[0], oy = rays_o[1], oz = rays_o[2];
    const float dx = rays_d[0], dy = rays_d[1], dz = rays_d[2];
    const float rdx = 1 / dx, rdy = 1 / dy, rdz = 1 / dz;

    // solve t from || o + td || = radius
    const float A = dx * dx + dy * dy + dz * dz;
    const float B = ox * dx + oy * dy + oz * dz; // in fact B / 2
    const float C = ox * ox + oy * oy + oz * oz - radius * radius;

    const float t = (- B + sqrtf(B * B - A * C)) / A; // always use the larger solution (positive)

    // solve theta, phi (assume y is the up axis)
    const float x = ox + t * dx, y = oy + t * dy, z = oz + t * dz;
    const float theta = atan2(sqrtf(x * x + z * z), y); // [0, PI)
    const float phi = atan2(z, x); // [-PI, PI)

    // normalize to [-1, 1]
    coords[0] = 2 * theta * RPI() - 1;
    coords[1] = phi * RPI();
}


void sph_from_ray(const at::Tensor rays_o, const at::Tensor rays_d, const float radius, const uint32_t N, at::Tensor coords) {

    static constexpr uint32_t N_THREAD = 128;

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    rays_o.scalar_type(), "sph_from_ray", ([&] {
        kernel_sph_from_ray<<<div_round_up(N, N_THREAD), N_THREAD>>>(rays_o.data_ptr<scalar_t>(), rays_d.data_ptr<scalar_t>(), radius, N, coords.data_ptr<scalar_t>());
    }));
}


// coords: int32, [N, 3]
// indices: int32, [N]
__global__ void kernel_morton3D(
    const int * __restrict__ coords,
    const uint32_t N,
    int * indices
) {
    // parallel
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= N) return;

    // locate
    coords += n * 3;
    indices[n] = __morton3D(coords[0], coords[1], coords[2]);
}


void morton3D(const at::Tensor coords, const uint32_t N, at::Tensor indices) {
    static constexpr uint32_t N_THREAD = 128;
    kernel_morton3D<<<div_round_up(N, N_THREAD), N_THREAD>>>(coords.data_ptr<int>(), N, indices.data_ptr<int>());
}


// indices: int32, [N]
// coords: int32, [N, 3]
__global__ void kernel_morton3D_invert(
    const int * __restrict__ indices,
    const uint32_t N,
    int * coords
) {
    // parallel
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= N) return;

    // locate
    coords += n * 3;

    const int ind = indices[n];

    coords[0] = __morton3D_invert(ind >> 0);
    coords[1] = __morton3D_invert(ind >> 1);
    coords[2] = __morton3D_invert(ind >> 2);
}


void morton3D_invert(const at::Tensor indices, const uint32_t N, at::Tensor coords) {
    static constexpr uint32_t N_THREAD = 128;
    kernel_morton3D_invert<<<div_round_up(N, N_THREAD), N_THREAD>>>(indices.data_ptr<int>(), N, coords.data_ptr<int>());
}


// grid: float, [C, H, H, H]
// N: int, C * H * H * H / 8
// density_thresh: float
// bitfield: uint8, [N]
template <typename scalar_t>
__global__ void kernel_packbits(
    const scalar_t * __restrict__ grid,
    const uint32_t N,
    const float density_thresh,
    uint8_t * bitfield
) {
    // parallel per byte
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= N) return;

    // locate
    grid += n * 8;

    uint8_t bits = 0;

    #pragma unroll
    for (uint8_t i = 0; i < 8; i++) {
        bits |= (grid[i] > density_thresh) ? ((uint8_t)1 << i) : 0;
    }

    bitfield[n] = bits;
}


void packbits(const at::Tensor grid, const uint32_t N, const float density_thresh, at::Tensor bitfield) {

    static constexpr uint32_t N_THREAD = 128;

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    grid.scalar_type(), "packbits", ([&] {
        kernel_packbits<<<div_round_up(N, N_THREAD), N_THREAD>>>(grid.data_ptr<scalar_t>(), N, density_thresh, bitfield.data_ptr<uint8_t>());
    }));
}

////////////////////////////////////////////////////
/////////////         training         /////////////
////////////////////////////////////////////////////

// rays_o/d: [N, 3]
// grid: [CHHH / 8]
// xyzs, dirs, deltas: [M, 3], [M, 3], [M, 2]
// dirs: [M, 3]
// rays: [N, 3], idx, offset, num_steps
template <typename scalar_t>
__global__ void kernel_march_rays_train(
    const scalar_t * __restrict__ rays_o,
    const scalar_t * __restrict__ rays_d,  
    const uint8_t * __restrict__ grid,
    const float bound,
    const float dt_gamma, const uint32_t max_steps,
    const uint32_t N, const uint32_t C, const uint32_t H, const uint32_t M,
    const scalar_t* __restrict__ nears, 
    const scalar_t* __restrict__ fars,
    scalar_t * xyzs, scalar_t * dirs, scalar_t * deltas,
    int * rays,
    int * counter,
    const scalar_t* __restrict__ noises
) {
    // parallel per ray
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= N) return;

    // locate
    rays_o += n * 3;
    rays_d += n * 3;

    // ray marching
    const float ox = rays_o[0], oy = rays_o[1], oz = rays_o[2];
    const float dx = rays_d[0], dy = rays_d[1], dz = rays_d[2];
    const float rdx = 1 / dx, rdy = 1 / dy, rdz = 1 / dz;
    const float rH = 1 / (float)H;
    const float H3 = H * H * H;

    const float near = nears[n];
    const float far = fars[n];
    const float noise = noises[n];

    const float dt_min = 2 * SQRT3() / max_steps;
    const float dt_max = 2 * SQRT3() * (1 << (C - 1)) / H;
    
    float t0 = near;
    
    // perturb
    t0 += clamp(t0 * dt_gamma, dt_min, dt_max) * noise;

    // first pass: estimation of num_steps
    float t = t0;
    uint32_t num_steps = 0;

    //if (t < far) printf("valid ray %d t=%f near=%f far=%f \n", n, t, near, far);
    
    while (t < far && num_steps < max_steps) {
        // current point
        const float x = clamp(ox + t * dx, -bound, bound);
        const float y = clamp(oy + t * dy, -bound, bound);
        const float z = clamp(oz + t * dz, -bound, bound);

        const float dt = clamp(t * dt_gamma, dt_min, dt_max);

        // get mip level
        const int level = max(mip_from_pos(x, y, z, C), mip_from_dt(dt, H, C)); // range in [0, C - 1]

        const float mip_bound = fminf(scalbnf(1.0f, level), bound);
        const float mip_rbound = 1 / mip_bound;
        
        // convert to nearest grid position
        const int nx = clamp(0.5 * (x * mip_rbound + 1) * H, 0.0f, (float)(H - 1));
        const int ny = clamp(0.5 * (y * mip_rbound + 1) * H, 0.0f, (float)(H - 1));
        const int nz = clamp(0.5 * (z * mip_rbound + 1) * H, 0.0f, (float)(H - 1));

        const uint32_t index = level * H3 + __morton3D(nx, ny, nz);
        const bool occ = grid[index / 8] & (1 << (index % 8));

        // if occpuied, advance a small step, and write to output
        //if (n == 0) printf("t=%f density=%f vs thresh=%f step=%d\n", t, density, density_thresh, num_steps);

        if (occ) {
            num_steps++;
            t += dt;
        // else, skip a large step (basically skip a voxel grid)
        } else {
            // calc distance to next voxel
            const float tx = (((nx + 0.5f + 0.5f * signf(dx)) * rH * 2 - 1) * mip_bound - x) * rdx;
            const float ty = (((ny + 0.5f + 0.5f * signf(dy)) * rH * 2 - 1) * mip_bound - y) * rdy;
            const float tz = (((nz + 0.5f + 0.5f * signf(dz)) * rH * 2 - 1) * mip_bound - z) * rdz;

            const float tt = t + fmaxf(0.0f, fminf(tx, fminf(ty, tz)));
            // step until next voxel
            do { 
                t += clamp(t * dt_gamma, dt_min, dt_max);
            } while (t < tt);
        }
    }

    //printf("[n=%d] num_steps=%d, near=%f, far=%f, dt=%f, max_steps=%f\n", n, num_steps, near, far, dt_min, (far - near) / dt_min);

    // second pass: really locate and write points & dirs
    uint32_t point_index = atomicAdd(counter, num_steps);
    uint32_t ray_index = atomicAdd(counter + 1, 1);
    
    //printf("[n=%d] num_steps=%d, point_index=%d, ray_index=%d\n", n, num_steps, point_index, ray_index);

    // write rays
    rays[ray_index * 3] = n;
    rays[ray_index * 3 + 1] = point_index;
    rays[ray_index * 3 + 2] = num_steps;

    if (num_steps == 0) return;
    if (point_index + num_steps > M) return;

    xyzs += point_index * 3;
    dirs += point_index * 3;
    deltas += point_index * 2;

    t = t0;
    uint32_t step = 0;

    float last_t = t;

    while (t < far && step < num_steps) {
        // current point
        const float x = clamp(ox + t * dx, -bound, bound);
        const float y = clamp(oy + t * dy, -bound, bound);
        const float z = clamp(oz + t * dz, -bound, bound);

        const float dt = clamp(t * dt_gamma, dt_min, dt_max);

        // get mip level
        const int level = max(mip_from_pos(x, y, z, C), mip_from_dt(dt, H, C)); // range in [0, C - 1]

        const float mip_bound = fminf(scalbnf(1.0f, level), bound);
        const float mip_rbound = 1 / mip_bound;
        
        // convert to nearest grid position
        const int nx = clamp(0.5 * (x * mip_rbound + 1) * H, 0.0f, (float)(H - 1));
        const int ny = clamp(0.5 * (y * mip_rbound + 1) * H, 0.0f, (float)(H - 1));
        const int nz = clamp(0.5 * (z * mip_rbound + 1) * H, 0.0f, (float)(H - 1));

        // query grid
        const uint32_t index = level * H3 + __morton3D(nx, ny, nz);
        const bool occ = grid[index / 8] & (1 << (index % 8));

        // if occpuied, advance a small step, and write to output
        if (occ) {
            // write step
            xyzs[0] = x;
            xyzs[1] = y;
            xyzs[2] = z;
            dirs[0] = dx;
            dirs[1] = dy;
            dirs[2] = dz;
            t += dt;
            deltas[0] = dt;
            deltas[1] = t - last_t; // used to calc depth
            last_t = t;
            xyzs += 3;
            dirs += 3;
            deltas += 2;
            step++;
        // else, skip a large step (basically skip a voxel grid)
        } else {
            // calc distance to next voxel
            const float tx = (((nx + 0.5f + 0.5f * signf(dx)) * rH * 2 - 1) * mip_bound - x) * rdx;
            const float ty = (((ny + 0.5f + 0.5f * signf(dy)) * rH * 2 - 1) * mip_bound - y) * rdy;
            const float tz = (((nz + 0.5f + 0.5f * signf(dz)) * rH * 2 - 1) * mip_bound - z) * rdz;
            const float tt = t + fmaxf(0.0f, fminf(tx, fminf(ty, tz)));
            // step until next voxel
            do { 
                t += clamp(t * dt_gamma, dt_min, dt_max); 
            } while (t < tt);
        }
    }
}

void march_rays_train(const at::Tensor rays_o, const at::Tensor rays_d, const at::Tensor grid, const float bound, const float dt_gamma, const uint32_t max_steps, const uint32_t N, const uint32_t C, const uint32_t H, const uint32_t M, const at::Tensor nears, const at::Tensor fars, at::Tensor xyzs, at::Tensor dirs, at::Tensor deltas, at::Tensor rays, at::Tensor counter, at::Tensor noises) {

    static constexpr uint32_t N_THREAD = 128;
    
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    rays_o.scalar_type(), "march_rays_train", ([&] {
        kernel_march_rays_train<<<div_round_up(N, N_THREAD), N_THREAD>>>(rays_o.data_ptr<scalar_t>(), rays_d.data_ptr<scalar_t>(), grid.data_ptr<uint8_t>(), bound, dt_gamma, max_steps, N, C, H, M, nears.data_ptr<scalar_t>(), fars.data_ptr<scalar_t>(), xyzs.data_ptr<scalar_t>(), dirs.data_ptr<scalar_t>(), deltas.data_ptr<scalar_t>(), rays.data_ptr<int>(), counter.data_ptr<int>(), noises.data_ptr<scalar_t>());
    }));
}


// sigmas: [M]
// rgbs: [M, 3]
// deltas: [M, 2]
// rays: [N, 3], idx, offset, num_steps
// weights_sum: [N], final pixel alpha
// depth: [N,]
// image: [N, 3]
template <typename scalar_t>
__global__ void kernel_composite_rays_train_forward(
    const scalar_t * __restrict__ sigmas,
    const scalar_t * __restrict__ rgbs,  
    const scalar_t * __restrict__ deltas,
    const int * __restrict__ rays,
    const uint32_t M, const uint32_t N, const float T_thresh, 
    scalar_t * weights_sum,
    scalar_t * depth,
    scalar_t * image
) {
    // parallel per ray
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= N) return;

    // locate 
    uint32_t index = rays[n * 3];
    uint32_t offset = rays[n * 3 + 1];
    uint32_t num_steps = rays[n * 3 + 2];

    // empty ray, or ray that exceed max step count.
    if (num_steps == 0 || offset + num_steps > M) {
        weights_sum[index] = 0;
        depth[index] = 0;
        image[index * 3] = 0;
        image[index * 3 + 1] = 0;
        image[index * 3 + 2] = 0;
        return;
    }

    sigmas += offset;
    rgbs += offset * 3;
    deltas += offset * 2;

    // accumulate 
    uint32_t step = 0;

    scalar_t T = 1.0f;
    scalar_t r = 0, g = 0, b = 0, ws = 0, t = 0, d = 0;

    while (step < num_steps) {

        const scalar_t alpha = 1.0f - __expf(- sigmas[0] * deltas[0]);
        const scalar_t weight = alpha * T;

        r += weight * rgbs[0];
        g += weight * rgbs[1];
        b += weight * rgbs[2];
        
        t += deltas[1]; // real delta
        d += weight * t;
        
        ws += weight;
        
        T *= 1.0f - alpha;

        // minimal remained transmittence
        if (T < T_thresh) break;

        //printf("[n=%d] num_steps=%d, alpha=%f, w=%f, T=%f, sum_dt=%f, d=%f\n", n, step, alpha, weight, T, sum_delta, d);

        // locate
        sigmas++;
        rgbs += 3;
        deltas += 2;

        step++;
    }

    //printf("[n=%d] rgb=(%f, %f, %f), d=%f\n", n, r, g, b, d);

    // write
    weights_sum[index] = ws; // weights_sum
    depth[index] = d;
    image[index * 3] = r;
    image[index * 3 + 1] = g;
    image[index * 3 + 2] = b;
}


void composite_rays_train_forward(const at::Tensor sigmas, const at::Tensor rgbs, const at::Tensor deltas, const at::Tensor rays, const uint32_t M, const uint32_t N, const float T_thresh, at::Tensor weights_sum, at::Tensor depth, at::Tensor image) {

    static constexpr uint32_t N_THREAD = 128;

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    sigmas.scalar_type(), "composite_rays_train_forward", ([&] {
        kernel_composite_rays_train_forward<<<div_round_up(N, N_THREAD), N_THREAD>>>(sigmas.data_ptr<scalar_t>(), rgbs.data_ptr<scalar_t>(), deltas.data_ptr<scalar_t>(), rays.data_ptr<int>(), M, N, T_thresh, weights_sum.data_ptr<scalar_t>(), depth.data_ptr<scalar_t>(), image.data_ptr<scalar_t>());
    }));
}


// grad_weights_sum: [N,]
// grad: [N, 3]
// sigmas: [M]
// rgbs: [M, 3]
// deltas: [M, 2]
// rays: [N, 3], idx, offset, num_steps
// weights_sum: [N,], weights_sum here 
// image: [N, 3]
// grad_sigmas: [M]
// grad_rgbs: [M, 3]
template <typename scalar_t>
__global__ void kernel_composite_rays_train_backward(
    const scalar_t * __restrict__ grad_weights_sum,
    const scalar_t * __restrict__ grad_image,
    const scalar_t * __restrict__ sigmas,
    const scalar_t * __restrict__ rgbs, 
    const scalar_t * __restrict__ deltas,
    const int * __restrict__ rays,
    const scalar_t * __restrict__ weights_sum,
    const scalar_t * __restrict__ image,
    const uint32_t M, const uint32_t N, const float T_thresh,
    scalar_t * grad_sigmas,
    scalar_t * grad_rgbs
) {
    // parallel per ray
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= N) return;

    // locate 
    uint32_t index = rays[n * 3];
    uint32_t offset = rays[n * 3 + 1];
    uint32_t num_steps = rays[n * 3 + 2];

    if (num_steps == 0 || offset + num_steps > M) return;

    grad_weights_sum += index;
    grad_image += index * 3;
    weights_sum += index;
    image += index * 3;
    sigmas += offset;
    rgbs += offset * 3;
    deltas += offset * 2;
    grad_sigmas += offset;
    grad_rgbs += offset * 3;

    // accumulate 
    uint32_t step = 0;
    
    scalar_t T = 1.0f;
    const scalar_t r_final = image[0], g_final = image[1], b_final = image[2], ws_final = weights_sum[0];
    scalar_t r = 0, g = 0, b = 0, ws = 0;

    while (step < num_steps) {
        
        const scalar_t alpha = 1.0f - __expf(- sigmas[0] * deltas[0]);
        const scalar_t weight = alpha * T;

        r += weight * rgbs[0];
        g += weight * rgbs[1];
        b += weight * rgbs[2];
        ws += weight;

        T *= 1.0f - alpha;
        
        // check https://note.kiui.moe/others/nerf_gradient/ for the gradient calculation.
        // write grad_rgbs
        grad_rgbs[0] = grad_image[0] * weight;
        grad_rgbs[1] = grad_image[1] * weight;
        grad_rgbs[2] = grad_image[2] * weight;

        // write grad_sigmas
        grad_sigmas[0] = deltas[0] * (
            grad_image[0] * (T * rgbs[0] - (r_final - r)) + 
            grad_image[1] * (T * rgbs[1] - (g_final - g)) + 
            grad_image[2] * (T * rgbs[2] - (b_final - b)) +
            grad_weights_sum[0] * (1 - ws_final)
        );

        //printf("[n=%d] num_steps=%d, T=%f, grad_sigmas=%f, r_final=%f, r=%f\n", n, step, T, grad_sigmas[0], r_final, r);
        // minimal remained transmittence
        if (T < T_thresh) break;
        
        // locate
        sigmas++;
        rgbs += 3;
        deltas += 2;
        grad_sigmas++;
        grad_rgbs += 3;

        step++;
    }
}


void composite_rays_train_backward(const at::Tensor grad_weights_sum, const at::Tensor grad_image, const at::Tensor sigmas, const at::Tensor rgbs, const at::Tensor deltas, const at::Tensor rays, const at::Tensor weights_sum, const at::Tensor image, const uint32_t M, const uint32_t N, const float T_thresh, at::Tensor grad_sigmas, at::Tensor grad_rgbs) {

    static constexpr uint32_t N_THREAD = 128;

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    grad_image.scalar_type(), "composite_rays_train_backward", ([&] {
        kernel_composite_rays_train_backward<<<div_round_up(N, N_THREAD), N_THREAD>>>(grad_weights_sum.data_ptr<scalar_t>(), grad_image.data_ptr<scalar_t>(), sigmas.data_ptr<scalar_t>(), rgbs.data_ptr<scalar_t>(), deltas.data_ptr<scalar_t>(), rays.data_ptr<int>(), weights_sum.data_ptr<scalar_t>(), image.data_ptr<scalar_t>(), M, N, T_thresh, grad_sigmas.data_ptr<scalar_t>(), grad_rgbs.data_ptr<scalar_t>());
    }));
}


////////////////////////////////////////////////////
/////////////          infernce        /////////////
////////////////////////////////////////////////////

template <typename scalar_t>
__global__ void kernel_march_rays(
    const uint32_t n_alive, 
    const uint32_t n_step, 
    const int* __restrict__ rays_alive, 
    const scalar_t* __restrict__ rays_t, 
    const scalar_t* __restrict__ rays_o, 
    const scalar_t* __restrict__ rays_d, 
    const float bound,
    const float dt_gamma, const uint32_t max_steps,
    const uint32_t C, const uint32_t H,
    const uint8_t * __restrict__ grid,
    const scalar_t* __restrict__ nears,
    const scalar_t* __restrict__ fars,
    scalar_t* xyzs, scalar_t* dirs, scalar_t* deltas,
    const scalar_t* __restrict__ noises
) {
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= n_alive) return;

    const int index = rays_alive[n]; // ray id
    const float noise = noises[n];
    
    // locate
    rays_o += index * 3;
    rays_d += index * 3;
    xyzs += n * n_step * 3;
    dirs += n * n_step * 3;
    deltas += n * n_step * 2;
    
    const float ox = rays_o[0], oy = rays_o[1], oz = rays_o[2];
    const float dx = rays_d[0], dy = rays_d[1], dz = rays_d[2];
    const float rdx = 1 / dx, rdy = 1 / dy, rdz = 1 / dz;
    const float rH = 1 / (float)H;
    const float H3 = H * H * H;
    
    float t = rays_t[index]; // current ray's t
    const float near = nears[index], far = fars[index];

    const float dt_min = 2 * SQRT3() / max_steps;
    const float dt_max = 2 * SQRT3() * (1 << (C - 1)) / H;

    // march for n_step steps, record points
    uint32_t step = 0;

    // introduce some randomness
    t += clamp(t * dt_gamma, dt_min, dt_max) * noise;

    float last_t = t;

    while (t < far && step < n_step) {
        // current point
        const float x = clamp(ox + t * dx, -bound, bound);
        const float y = clamp(oy + t * dy, -bound, bound);
        const float z = clamp(oz + t * dz, -bound, bound);

        const float dt = clamp(t * dt_gamma, dt_min, dt_max);

        // get mip level
        const int level = max(mip_from_pos(x, y, z, C), mip_from_dt(dt, H, C)); // range in [0, C - 1]

        const float mip_bound = fminf(scalbnf(1, level), bound);
        const float mip_rbound = 1 / mip_bound;
        
        // convert to nearest grid position
        const int nx = clamp(0.5 * (x * mip_rbound + 1) * H, 0.0f, (float)(H - 1));
        const int ny = clamp(0.5 * (y * mip_rbound + 1) * H, 0.0f, (float)(H - 1));
        const int nz = clamp(0.5 * (z * mip_rbound + 1) * H, 0.0f, (float)(H - 1));

        const uint32_t index = level * H3 + __morton3D(nx, ny, nz);
        const bool occ = grid[index / 8] & (1 << (index % 8));

        // if occpuied, advance a small step, and write to output
        if (occ) {
            // write step
            xyzs[0] = x;
            xyzs[1] = y;
            xyzs[2] = z;
            dirs[0] = dx;
            dirs[1] = dy;
            dirs[2] = dz;
            // calc dt
            t += dt;
            deltas[0] = dt;
            deltas[1] = t - last_t; // used to calc depth
            last_t = t;
            // step
            xyzs += 3;
            dirs += 3;
            deltas += 2;
            step++;

        // else, skip a large step (basically skip a voxel grid)
        } else {
            // calc distance to next voxel
            const float tx = (((nx + 0.5f + 0.5f * signf(dx)) * rH * 2 - 1) * mip_bound - x) * rdx;
            const float ty = (((ny + 0.5f + 0.5f * signf(dy)) * rH * 2 - 1) * mip_bound - y) * rdy;
            const float tz = (((nz + 0.5f + 0.5f * signf(dz)) * rH * 2 - 1) * mip_bound - z) * rdz;
            const float tt = t + fmaxf(0.0f, fminf(tx, fminf(ty, tz)));
            // step until next voxel
            do { 
                t += clamp(t * dt_gamma, dt_min, dt_max);
            } while (t < tt);
        }
    }
}


void march_rays(const uint32_t n_alive, const uint32_t n_step, const at::Tensor rays_alive, const at::Tensor rays_t, const at::Tensor rays_o, const at::Tensor rays_d, const float bound, const float dt_gamma, const uint32_t max_steps, const uint32_t C, const uint32_t H, const at::Tensor grid, const at::Tensor near, const at::Tensor far, at::Tensor xyzs, at::Tensor dirs, at::Tensor deltas, at::Tensor noises) {
    static constexpr uint32_t N_THREAD = 128;

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    rays_o.scalar_type(), "march_rays", ([&] {
        kernel_march_rays<<<div_round_up(n_alive, N_THREAD), N_THREAD>>>(n_alive, n_step, rays_alive.data_ptr<int>(), rays_t.data_ptr<scalar_t>(), rays_o.data_ptr<scalar_t>(), rays_d.data_ptr<scalar_t>(), bound, dt_gamma, max_steps, C, H, grid.data_ptr<uint8_t>(), near.data_ptr<scalar_t>(), far.data_ptr<scalar_t>(), xyzs.data_ptr<scalar_t>(), dirs.data_ptr<scalar_t>(), deltas.data_ptr<scalar_t>(), noises.data_ptr<scalar_t>());
    }));
}


template <typename scalar_t>
__global__ void kernel_composite_rays(
    const uint32_t n_alive, 
    const uint32_t n_step, 
    const float T_thresh,
    int* rays_alive, 
    scalar_t* rays_t, 
    const scalar_t* __restrict__ sigmas, 
    const scalar_t* __restrict__ rgbs, 
    const scalar_t* __restrict__ deltas, 
    scalar_t* weights_sum, scalar_t* depth, scalar_t* image
) {
    const uint32_t n = threadIdx.x + blockIdx.x * blockDim.x;
    if (n >= n_alive) return;

    const int index = rays_alive[n]; // ray id
    
    // locate 
    sigmas += n * n_step;
    rgbs += n * n_step * 3;
    deltas += n * n_step * 2;
    
    rays_t += index;
    weights_sum += index;
    depth += index;
    image += index * 3;

    scalar_t t = rays_t[0]; // current ray's t
    
    scalar_t weight_sum = weights_sum[0];
    scalar_t d = depth[0];
    scalar_t r = image[0];
    scalar_t g = image[1];
    scalar_t b = image[2];

    // accumulate 
    uint32_t step = 0;
    while (step < n_step) {
        
        // ray is terminated if delta == 0
        if (deltas[0] == 0) break;
        
        const scalar_t alpha = 1.0f - __expf(- sigmas[0] * deltas[0]);

        /* 
        T_0 = 1; T_i = \prod_{j=0}^{i-1} (1 - alpha_j)
        w_i = alpha_i * T_i
        --> 
        T_i = 1 - \sum_{j=0}^{i-1} w_j
        */
        const scalar_t T = 1 - weight_sum;
        const scalar_t weight = alpha * T;
        weight_sum += weight;

        t += deltas[1]; // real delta
        d += weight * t;
        r += weight * rgbs[0];
        g += weight * rgbs[1];
        b += weight * rgbs[2];

        //printf("[n=%d] num_steps=%d, alpha=%f, w=%f, T=%f, sum_dt=%f, d=%f\n", n, step, alpha, weight, T, sum_delta, d);

        // ray is terminated if T is too small
        // use a larger bound to further accelerate inference
        if (T < T_thresh) break;

        // locate
        sigmas++;
        rgbs += 3;
        deltas += 2;
        step++;
    }

    //printf("[n=%d] rgb=(%f, %f, %f), d=%f\n", n, r, g, b, d);

    // rays_alive = -1 means ray is terminated early.
    if (step < n_step) {
        rays_alive[n] = -1;
    } else {
        rays_t[0] = t;
    }

    weights_sum[0] = weight_sum; // this is the thing I needed!
    depth[0] = d;
    image[0] = r;
    image[1] = g;
    image[2] = b;
}


void composite_rays(const uint32_t n_alive, const uint32_t n_step, const float T_thresh, at::Tensor rays_alive, at::Tensor rays_t, at::Tensor sigmas, at::Tensor rgbs, at::Tensor deltas, at::Tensor weights, at::Tensor depth, at::Tensor image) {
    static constexpr uint32_t N_THREAD = 128;
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    image.scalar_type(), "composite_rays", ([&] {
        kernel_composite_rays<<<div_round_up(n_alive, N_THREAD), N_THREAD>>>(n_alive, n_step, T_thresh, rays_alive.data_ptr<int>(), rays_t.data_ptr<scalar_t>(), sigmas.data_ptr<scalar_t>(), rgbs.data_ptr<scalar_t>(), deltas.data_ptr<scalar_t>(), weights.data_ptr<scalar_t>(), depth.data_ptr<scalar_t>(), image.data_ptr<scalar_t>());
    }));
}