File size: 3,000 Bytes
e8ffc70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
#include <torch/serialize/tensor.h>
#include <vector>
// #include <THC/THC.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "ball_query_gpu.h"
// extern THCState *state;
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
#define CHECK_CUDA(x) do { \
if (!x.type().is_cuda()) { \
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
#define CHECK_CONTIGUOUS(x) do { \
if (!x.is_contiguous()) { \
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \
exit(-1); \
} \
} while (0)
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) {
CHECK_INPUT(new_xyz_tensor);
CHECK_INPUT(xyz_tensor);
const float *new_xyz = new_xyz_tensor.data<float>();
const float *xyz = xyz_tensor.data<float>();
int *idx = idx_tensor.data<int>();
ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx);
return 1;
}
int ball_center_query_wrapper_fast(int b, int n, int m, float radius,
at::Tensor point_tensor, at::Tensor key_point_tensor, at::Tensor idx_tensor) {
CHECK_INPUT(point_tensor);
CHECK_INPUT(key_point_tensor);
const float *point = point_tensor.data<float>();
const float *key_point = key_point_tensor.data<float>();
int *idx = idx_tensor.data<int>();
ball_center_query_kernel_launcher_fast(b, n, m, radius, point, key_point, idx);
return 1;
}
int knn_query_wrapper_fast(int b, int n, int m, int nsample,
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
CHECK_INPUT(new_xyz_tensor);
CHECK_INPUT(xyz_tensor);
const float *new_xyz = new_xyz_tensor.data<float>();
const float *xyz = xyz_tensor.data<float>();
float *dist2 = dist2_tensor.data<float>();
int *idx = idx_tensor.data<int>();
knn_query_kernel_launcher_fast(b, n, m, nsample, new_xyz, xyz, dist2, idx);
return 1;
}
int ball_query_wrapper_stack(int B, int M, float radius, int nsample,
at::Tensor new_xyz_tensor, at::Tensor new_xyz_batch_cnt_tensor,
at::Tensor xyz_tensor, at::Tensor xyz_batch_cnt_tensor, at::Tensor idx_tensor) {
CHECK_INPUT(new_xyz_tensor);
CHECK_INPUT(xyz_tensor);
CHECK_INPUT(new_xyz_batch_cnt_tensor);
CHECK_INPUT(xyz_batch_cnt_tensor);
const float *new_xyz = new_xyz_tensor.data<float>();
const float *xyz = xyz_tensor.data<float>();
const int *new_xyz_batch_cnt = new_xyz_batch_cnt_tensor.data<int>();
const int *xyz_batch_cnt = xyz_batch_cnt_tensor.data<int>();
int *idx = idx_tensor.data<int>();
ball_query_kernel_launcher_stack(B, M, radius, nsample, new_xyz, new_xyz_batch_cnt, xyz, xyz_batch_cnt, idx);
return 1;
} |