File size: 6,199 Bytes
963fe24 fa42f6e 963fe24 fa42f6e 963fe24 fa42f6e db9f346 fa42f6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
- ja
---
# Uploaded model
- **Developed by:** WatariNAKANO
- **License:** apache-2.0
- **Finetuned from model :** llm-jp/llm-jp-3-13b
- **使用したデータセット :** ichikara-instruction-003-001-1.json
- **ライセンス :** CC-BY-NC-SA
- **実行環境 :** Google Colab(L4)
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# コードの説明
```python
# 必要なライブラリをインストール
!pip uninstall unsloth -y
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --upgrade torch
!pip install --upgrade xformers
# Install Flash Attention 2 for softcapping support
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
# Hugging Face Token を指定
HF_TOKEN = "your-token" #@param {type:"string"}
# llm-jp/llm-jp-3-13bを4bit量子化のqLoRA設定でロード。
from unsloth import FastLanguageModel
import torch
max_seq_length = 768 # unslothではRoPEをサポートしているのでコンテキスト長は自由に設定可能
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue
model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-it-1217" #Fine-Tuningしたモデルにつけたい名前、it: Instruction Tuning
# FastLanguageModel インスタンスを作成
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
# SFT用のモデルを用意
model = FastLanguageModel.get_peft_model(
model,
r = 32,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0.05,
bias = "none",
use_gradient_checkpointing = "unsloth",
random_state = 3407,
use_rslora = False,
loftq_config = None,
max_seq_length = max_seq_length,
)
# 学習に用いるデータセットの指定
# CC-BY-NC-SAですのでモデルはライセンスを継承する前提でお使いください。
# https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/
# 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
from datasets import load_dataset
dataset = load_dataset("json", data_files="/content/ichikara-instruction-003-001-1.json")
# 学習時のプロンプトフォーマットの定義
prompt = """### 指示
{}
### 回答
{}"""
"""
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
"""
EOS_TOKEN = tokenizer.eos_token # トークナイザーのEOSトークン(文末トークン)
def formatting_prompts_func(examples):
input = examples["text"] # 入力データ
output = examples["output"] # 出力データ
text = prompt.format(input, output) + EOS_TOKEN # プロンプトの作成
return { "formatted_text" : text, } # 新しいフィールド "formatted_text" を返す
pass
# # 各データにフォーマットを適用
dataset = dataset.map(
formatting_prompts_func,
num_proc= 4, # 並列処理数を指定
)
dataset
# training_arguments: 学習の設定
from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset=dataset["train"],
max_seq_length = max_seq_length,
dataset_text_field="formatted_text",
packing = False,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
num_train_epochs = 1,
logging_steps = 10,
warmup_steps = 10,
save_steps=100,
save_total_limit=2,
max_steps=-1,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
group_by_length=True,
seed = 3407,
output_dir = "outputs",
report_to = "none",
),
)
#@title 学習実行
trainer_stats = trainer.train()
# データセットの読み込み。
import json
datasets = []
with open("/content//elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# 学習したモデルを用いてタスクを実行
from tqdm import tqdm
# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 768, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
# jsonlで保存
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
# LoRAアダプタだけ保存
new_model_id = "WatariNAKANO/llm-jp-3-13b-it-1217" #Fine-Tuningしたモデルにつけたい名前
model.push_to_hub_merged(
new_model_id+"_lora",
tokenizer=tokenizer,
save_method="lora",
token=HF_TOKEN,
private=True
)
```
|