WasuratS's picture
update model card README.md
aedcbc6
|
raw
history blame
2.66 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results: []

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6711
  • Accuracy: 0.82

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1962 1.0 113 2.2220 0.29
1.9431 2.0 226 1.8877 0.5
1.634 3.0 339 1.5106 0.63
1.3403 4.0 452 1.3191 0.66
1.1067 5.0 565 1.1082 0.68
1.0416 6.0 678 1.0664 0.72
0.7723 7.0 791 0.9729 0.77
0.8281 8.0 904 0.8799 0.78
0.6344 9.0 1017 0.8142 0.77
0.8819 10.0 1130 0.8719 0.73
0.4279 11.0 1243 0.8150 0.78
0.425 12.0 1356 0.7137 0.81
0.2749 13.0 1469 0.6987 0.8
0.2182 14.0 1582 0.6849 0.82
0.2128 15.0 1695 0.6918 0.82
0.1831 16.0 1808 0.6600 0.81
0.1517 17.0 1921 0.6571 0.82
0.2888 18.0 2034 0.6880 0.81
0.1605 19.0 2147 0.6874 0.82
0.1492 20.0 2260 0.6711 0.82

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3