|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
--- |
|
|
|
https://github.com/zejunwang1/bloom_tuning |
|
|
|
可以通过如下代码调用 bloom-820m-chat 模型来生成对话: |
|
|
|
```python |
|
from transformers import BloomTokenizerFast, BloomForCausalLM |
|
|
|
model_name_or_path = "WangZeJun/bloom-820m-chat" |
|
|
|
tokenizer = BloomTokenizerFast.from_pretrained(model_name_or_path) |
|
model = BloomForCausalLM.from_pretrained(model_name_or_path).cuda() |
|
model = model.eval() |
|
|
|
input_pattern = "{}</s>" |
|
text = "你好" |
|
input_ids = tokenizer(input_pattern.format(text), return_tensors="pt").input_ids |
|
input_ids = input_ids.cuda() |
|
|
|
outputs = model.generate(input_ids, do_sample=True, max_new_tokens=1024, top_p=0.85, |
|
temperature=0.3, repetition_penalty=1.2, eos_token_id=tokenizer.eos_token_id) |
|
|
|
input_ids_len = input_ids.size(1) |
|
response_ids = outputs[0][input_ids_len:] |
|
response = tokenizer.decode(response_ids) |
|
print(response) |
|
``` |
|
|