File size: 1,607 Bytes
f0aa725 fe13aea f0aa725 fe13aea f0aa725 e1929ef f0aa725 e1929ef 1618559 f0aa725 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# Model card for CoNN Add Carry
### Introduction
In paper Neural Comprehension: Language Models with Compiled Neural Networks , we introduced the integration of Compiled Neural Networks (CoNN) into the framework of language models, enabling existing language models to perform symbolic operations with perfect accuracy without the need for external tools.
In this model card, we introduce the Add Carry model, which is similar to the Transformer model and can perform carry operations on a sequence of numbers added in parallel.
### Install
```
git clone https://github.com/WENGSYX/Neural-Comprehension
cd Neural-Comprehension
pip install .
```
To run neural comprehension, you need to install `PyTorch`, `Transformers`, `jax`, and `tracr`.
### How to Use?
```
from NeuralCom.CoNN.modeling_conn import CoNNModel
from NeuralCom.CoNN import Tokenizer
model = CoNNModel.from_pretrained('WENGSYX/CoNN_Add_Carry')
tokenizer = Tokenizer(model.config.input_encoding_map, model.config.output_encoding_map,model.config.max_position_embeddings)
output = model(tokenizer('2 15 3 8 10').unsqueeze(0))
print(tokenizer.decode(output.argmax(2)))
>>> [['bos', '3', '5', '3', '9', '0']]
```
### 🙏Cite🙏
###### If you are interested in our paper, please feel free to cite it.
```
@misc{weng2023neural,
title={Neural Comprehension: Language Models with Compiled Neural Networks},
author={Yixuan Weng and Minjun Zhu and Fei Xia and Bin Li and Shizhu He and Kang Liu and Jun Zhao},
year={2023},
eprint={2304.01665},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |