sbert-base-cased-pl / README.md
AgaMiko's picture
Update README.md
0dc2d91
---
license: cc-by-4.0
language:
- pl
datasets:
- Wikipedia
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
widget:
- source_sentence: "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego."
sentences:
- "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju."
- "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. "
- "Samica o długości ciała 10–11 mm, szczoteczki na tylnych nogach służące do zbierania pyłku oraz włoski na końcu odwłoka jaskrawo pomarańczowoczerwone. "
example_title: "Uczenie maszynowe"
---
<img src="https://public.3.basecamp.com/p/rs5XqmAuF1iEuW6U7nMHcZeY/upload/download/VL-NLP-short.png" alt="logo voicelab nlp" style="width:300px;"/>
# SHerbert - Polish SentenceBERT
SentenceBERT is a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. Training was based on the original paper [Siamese BERT models for the task of semantic textual similarity (STS)](https://arxiv.org/abs/1908.10084) with a slight modification of how the training data was used. The goal of the model is to generate different embeddings based on the semantic and topic similarity of the given text.
> Semantic textual similarity analyzes how similar two pieces of texts are.
Read more about how the model was prepared in our [blog post](https://voicelab.ai/blog/).
The base trained model is a Polish HerBERT. HerBERT is a BERT-based Language Model. For more details, please refer to: "HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish".
# Corpus
Te model was trained solely on [Wikipedia](https://dumps.wikimedia.org/).
# Tokenizer
As in the original HerBERT implementation, the training dataset was tokenized into subwords using a character level byte-pair encoding (CharBPETokenizer) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a tokenizers library.
We kindly encourage you to use the Fast version of the tokenizer, namely HerbertTokenizerFast.
# Usage
```python
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics import pairwise
sbert = AutoModel.from_pretrained("Voicelab/sbert-base-cased-pl")
tokenizer = AutoTokenizer.from_pretrained("Voicelab/sbert-base-cased-pl")
s0 = "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego."
s1 = "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju."
s2 = "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. "
tokens = tokenizer([s0, s1, s2],
padding=True,
truncation=True,
return_tensors='pt')
x = sbert(tokens["input_ids"],
tokens["attention_mask"]).pooler_output
# similarity between sentences s0 and s1
print(pairwise.cosine_similarity(x[0], x[1])) # Result: 0.7952354
# similarity between sentences s0 and s2
print(pairwise.cosine_similarity(x[0], x[2])) # Result: 0.42359722
```
# Results
| Model | Accuracy | Source |
|--------------------------|------------|---------------------------------------------------------|
| SBERT-WikiSec-base (EN) | 80.42% | https://arxiv.org/abs/1908.10084 |
| SBERT-WikiSec-large (EN) | 80.78% | https://arxiv.org/abs/1908.10084 |
| **sbert-base-cased-pl** | **82.31%** | **https://huggingface.co/Voicelab/sbert-base-cased-pl** |
| sbert-large-cased-pl | 84.42% | https://huggingface.co/Voicelab/sbert-large-cased-pl |
# License
CC BY 4.0
# Citation
If you use this model, please cite the following paper:
# Authors
The model was trained by NLP Research Team at Voicelab.ai.
You can contact us [here](https://voicelab.ai/contact/).