File size: 2,068 Bytes
146e66c
37e4ed6
146e66c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e4ed6
146e66c
37e4ed6
 
146e66c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655fba6
146e66c
 
 
 
37e4ed6
 
 
 
 
 
 
 
 
 
 
 
 
146e66c
 
 
 
37e4ed6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: vinai/bartpho-syllable
tags:
- text2text-generation
- generated_from_trainer
metrics:
- sacrebleu
model-index:
- name: nlp_vietnamese_spelling
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nlp_vietnamese_spelling

This model is a fine-tuned version of [vinai/bartpho-syllable](https://huggingface.co/vinai/bartpho-syllable) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1084
- Sacrebleu: 19.1727

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Sacrebleu |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|
| 1.0565        | 0.25  | 1000  | 0.4944          | 13.1438   |
| 0.5878        | 0.5   | 2000  | 0.2775          | 16.2433   |
| 0.4367        | 0.75  | 3000  | 0.2222          | 17.0610   |
| 0.3627        | 1.0   | 4000  | 0.1793          | 17.9412   |
| 0.2672        | 1.25  | 5000  | 0.1533          | 18.3610   |
| 0.2305        | 1.5   | 6000  | 0.1429          | 18.4508   |
| 0.2164        | 1.75  | 7000  | 0.1296          | 18.8490   |
| 0.1948        | 2.01  | 8000  | 0.1205          | 19.0083   |
| 0.1537        | 2.26  | 9000  | 0.1167          | 19.0106   |
| 0.1491        | 2.51  | 10000 | 0.1131          | 19.0764   |
| 0.1414        | 2.76  | 11000 | 0.1084          | 19.1727   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2